
Hammer
Release 1.0.0

Berkeley Architecture Research

Nov 13, 2023

CONTENTS:

1 Hammer Basics 3
1.1 Hammer Overview . 3

1.1.1 Main Hammer . 3
1.1.2 Tech Plugins . 4
1.1.3 Tool Plugins . 4
1.1.4 Calling Hammer . 5
1.1.5 Summary . 5

1.2 Hammer Setup . 6
1.2.1 User Setup . 6
1.2.2 Developer Setup . 7

1.3 Migration Guide . 10
1.3.1 Selecting Plugins . 11
1.3.2 import Statements . 11
1.3.3 Technology JSON . 11
1.3.4 Plugin File Structure . 12
1.3.5 Resource Files . 13
1.3.6 pyproject.toml . 13

2 Hammer Technology Plugins 15
2.1 Hammer Technologies . 15

2.1.1 HammerTechnology Class . 16
2.2 Hammer Tech JSON . 16

2.2.1 Technology Install . 16
2.2.2 DRC/LVS Deck Setup . 17
2.2.3 Library Setup . 17
2.2.4 Stackup . 18
2.2.5 Sites . 19
2.2.6 Special Cells . 19
2.2.7 Don’t Use, Physical-Only Cells . 19
2.2.8 Full Schema . 20

2.3 Hammer Tech defaults.yml . 28
2.4 Sky130 Technology Library . 28

2.4.1 PDK Setup . 28
2.4.2 SRAM Macros . 29
2.4.3 IO Library . 29
2.4.4 NDA Files . 31
2.4.5 Resources . 31

2.5 ASAP7 Technology Library . 32
2.5.1 Setup and Environment . 32
2.5.2 Dummy SRAMs . 32

i

2.5.3 Known Issues . 33
2.6 Nangate45 Technology Library . 33

2.6.1 Dummy SRAMs . 33
2.6.2 Supported Tools . 33

3 Hammer Tool Plugins 35
3.1 Hammer CAD Tools . 35
3.2 Setting up a Hammer CAD Tool Plugin . 35

3.2.1 Tool Class . 36
3.2.2 Steps . 36
3.2.3 Getting Settings . 36
3.2.4 Writing TCL . 36
3.2.5 Executing the Tool . 36
3.2.6 Tool Outputs . 36
3.2.7 defaults.yml . 37

3.3 OpenROAD Place-and-Route Tool Plugin . 37
3.3.1 Tool Setup . 37
3.3.2 Tool Steps . 37
3.3.3 Step Details . 38
3.3.4 Issue Archiving . 38

3.4 Cadence Joules RTL Power Tool Plugin . 39
3.4.1 Tool Steps . 39
3.4.2 Known Issues . 39

3.5 DRC/LVS with IC Validator . 39
3.6 DRC/LVS with Pegasus . 40

3.6.1 Pegasus usage notes . 40
3.6.2 Pegasus Design Review usage notes . 40

4 Hammer Flow Steps 41
4.1 Hammer Actions . 41
4.2 Synthesis . 41

4.2.1 Synthesis Setup Keys . 41
4.2.2 Synthesis Input Keys . 42
4.2.3 Synthesis Inputs . 42
4.2.4 Synthesis Outputs . 42
4.2.5 Synthesis Commands . 42

4.3 Place-and-Route . 43
4.3.1 P&R Setup Keys . 43
4.3.2 P&R Input Keys . 43
4.3.3 P&R Inputs . 44
4.3.4 P&R Outputs . 44
4.3.5 P&R Commands . 44

4.4 DRC . 44
4.4.1 DRC Setup Keys . 45
4.4.2 DRC Input Keys . 45
4.4.3 DRC Inputs . 45
4.4.4 DRC Outputs . 45
4.4.5 DRC Commands . 45

4.5 LVS . 46
4.5.1 LVS Setup Keys . 46
4.5.2 LVS Input Keys . 46
4.5.3 LVS Inputs . 46
4.5.4 LVS Outputs . 46
4.5.5 LVS Commands . 47

ii

4.6 Simulation . 47
4.6.1 Simulation Setup Keys . 47
4.6.2 Simulation Input Keys . 47
4.6.3 Simulation Inputs . 49
4.6.4 Simulation Outputs . 49
4.6.5 Simulation Commands . 49

4.7 Power . 49
4.7.1 Power Setup Keys . 50
4.7.2 Simulation Input Keys . 50
4.7.3 Power Inputs . 51
4.7.4 Power Outputs . 51
4.7.5 Power Commands . 51

4.8 Formal Verification . 52
4.8.1 Formal Verification Setup Keys . 52
4.8.2 Formal Verification Input Keys . 52
4.8.3 Formal Verification Inputs . 53
4.8.4 Formal Verification Outputs . 53
4.8.5 Formal Verification Commands . 53

4.9 Static Timing Analysis . 54
4.9.1 STA Setup Keys . 54
4.9.2 STA Input Keys . 54
4.9.3 STA Inputs . 54
4.9.4 STA Outputs . 55
4.9.5 STA Commands . 55

5 Hammer Use 57
5.1 Hammer IR and Meta Variables . 57

5.1.1 Hammer IR . 57
5.1.2 The hammer-config library . 57
5.1.3 Basics . 58
5.1.4 Overriding . 58
5.1.5 Meta actions . 58
5.1.6 Applying multiple meta actions . 59
5.1.7 Common meta actions . 59
5.1.8 Type Checking . 61
5.1.9 Key History . 61
5.1.10 Key Description Lookup . 62
5.1.11 Reference . 63

5.2 Hammer APIs . 63
5.2.1 Power Specification . 64
5.2.2 Timing Constraints . 64
5.2.3 Floorplan & Placement . 64
5.2.4 Bumps . 64
5.2.5 Pins . 64
5.2.6 Power Straps . 65
5.2.7 Special Cells . 70
5.2.8 Submission . 71

5.3 Flow Control . 71
5.3.1 Command-line Interface . 71

5.4 Extending Hammer with Hooks . 72
5.4.1 Hook Methods . 72
5.4.2 Including Hooks . 72
5.4.3 Technology, Tool, and User-Provided Hooks . 73

5.5 Hammer Buildfile . 73

iii

5.6 Hierarchical Hammer Flow . 74
5.6.1 Hierarchical Hammer Config . 74
5.6.2 Flow Management and Actions . 75
5.6.3 Cadence Implementation . 75
5.6.4 Tips for Constraining Hierarchical Modules . 76
5.6.5 Special Notes & Limitations . 76

6 Hammer Examples 79
6.1 Introduction with Sky130 and OpenROAD . 79

6.1.1 Instructions . 79
6.1.2 Next Steps . 80

6.2 Hammer End-to-End Integration Tests . 81
6.2.1 Setup . 81
6.2.2 Overview . 81
6.2.3 Run the Flow . 82
6.2.4 Custom Setups . 84

7 Indices and tables 85

iv

Hammer, Release 1.0.0

Hammer is a physical design framework that wraps around vendor specific technologies and tools to provide a single
API to create ASICs. Hammer allows for reusability in ASIC design while still providing the designers leeway to make
their own modifications.

Hammer (Highly Agile Masks Made Effortlessly from RTL) is a framework for building physical design generators
for digital VLSI flows. It is an evolving set of APIs that enable reuse in an effort to speed up VLSI flows, which have
traditionally been entirely rebuilt for different projects, technologies, and tools.

Hammer is able to generate scripts and collateral for a growing range of CAD tools while remaining technology-agnostic
using a well-defined set of common APIs. Tool- and technology-specific concerns live inside plugins, implement APIs,
and provide a set of working default configurations.

The vision of Hammer is to reduce the cycle time on VLSI designs, enabling rapid RTL design space exploration
and allowing a designer to investigate the impact of various parameters like timing constraints and floorplans without
needing to worry about low-level details.

For high-level details about Hammer’s design principles and capabilities, please refer to our DAC 2022 paper entitled
Hammer: A Modular and Reusable Physical Design Flow Tool. We kindly request that this paper be cited in any
publications where Hammer was used.

CONTENTS: 1

https://dl.acm.org/doi/abs/10.1145/3489517.3530672

Hammer, Release 1.0.0

2 CONTENTS:

CHAPTER

ONE

HAMMER BASICS

This documentation will give an overview of Hammer, its basic setup, its components, and its structure, as well as some
typical project setup.

1.1 Hammer Overview

Hammer has a set of actions and automatically takes the output of one action and converts it into the input for another.
For instance, a synthesis action will output a mapped verilog file which will then automatically by piped to the place-
and-route input when a place-and-route action is called.

A user’s Hammer environment is typically separated into four different components: core Hammer, one or more tool
plugins, a technology plugin, and a set of project-specific Hammer input files. Hammer is meant to expose a set of
generalized APIs that are then implemented by tool- and technology-specific plugins.

Hammer is included in a larger project called Chipyard which is the unified repo for an entire RTL, simulation, emula-
tion, and VLSI flow from Berkeley Architecture Research. There is an in-depth Hammer demo there, and it is a great
place to look at a typical Hammer setup.

1.1.1 Main Hammer

Hammer provides the Python backend for a Hammer project and exposes a set of APIs that are typical of modern
VLSI flows. These APIs are then implemented by a tool plugin and a technology plugin of the designer’s choice. The
structure of Hammer is meant to enable re-use and portability between technologies.

Hammer takes its inputs and serializes its state in the form of YAML and JSON files, called Hammer IR. The designer
sets a variety of settings in the form of keys in different namespaces that are designated in Hammer to control its
functionality.

Note: Supported keys are contained in defaults.yml <https://github.com/ucb-
bar/hammer/blob/master/hammer/config/defaults.yml>__. This file provides sensible defaults that may be overridden
or are set to null if they must be provided by the designer.

Here is an example of a snippet that would be included in the user’s input configuration.

vlsi.core.technology: "hammer.technology.asap7"
vlsi.inputs.supplies:

VDD: "0.7 V"
GND: "0 V"

3

https://github.com/ucb-bar/chipyard

Hammer, Release 1.0.0

This demonstrates two different namespaces, vlsi.core and vlsi.inputs, and then two different keys, technology
and supplies, which are set to the asap7 technology and 0.7 Volts supply voltage, respectively.

Further details about these keys and how they are manipulated is found in the Hammer IR and Meta Variables section.

1.1.2 Tech Plugins

A techonology plugin consists of two or more files: a *.tech.json and a defaults.yml.

The *.tech.json contains pointers to relevant PDK files and fundamental technology constants. These values are
not meant to be overriden, nor can they be for the time being.

defaults.yml sets default technology variables for Hammer to consume, which may be specific to this technology
or generic to all. These values may be overriden by design-specific configurations. An example of this is shown in the
open-source technology plugins in hammer/technology/, such as asap7, and how to setup a technology plugin is
documented in more detail in the Hammer Technology Plugins section.

Note: Unless you are a UCB BAR or BWRC affiliate or have set up a 3-way technology NDA with us, we cannot share
pre-built proprietary technology plugin repositories.

1.1.3 Tool Plugins

A Hammer tool plugin actually implements tool-specific steps of the VLSI flow in Hammer in a template-like fashion.
The TCL commands input to the tool are created using technology and design settings provided by the designer.

There are currently three Hammer tool plugin repositories for commercial tools: hammer-cadence-plugins,
hammer-synopsys-plugins, and hammer-mentor-plugins. In them are tool plugin implementations
for actions including synthesis, place-and-route, DRC, LVS, and simulation. hammer-cadence-plugins
and hammer-synopsys-plugins are publicly available; however, users must request access to
hammer-mentor-plugins.

Note: If you are not a UCB BAR or BWRC affiliate and have access to Mentor Graphics (now Siemens) tools, please
email hammer-plugins-access@lists.berkeley.edu with a request for access to the hammer-mentor-plugins repository.
MAKE SURE TO INCLUDE YOUR GITHUB ID IN YOUR EMAIL AND YOUR ASSOCIATION TO SHOW YOU
HAVE LICENSED ACCESS TO THE TOOLS. There will be no support guarantee for the plugin repositories, but
users are encouraged to file issues and contribute patches where needed.

There are also a set of open-source tools (e.g. Yosys, OpenROAD, Magic, Netgen) provided in hammer/ under their
respective actions.

These plugins implement many of the common steps of a modern physical design flow. However, a real chip flow
will require many custom settings and steps that may not be generalizable across technology nodes. Because of this,
Hammer has an “escape-hatch” mechanism, called a hook, that allows the designer to inject custom steps between the
default steps provided by the CAD tool plugin. Hooks are python methods that emit TCL code and may be inserted
before or after an existing step or replace the step entirely. This allows the designer to leverage the APIs built into
Hammer while easily inserting custom steps into the flow. Hooks are discussed in more detail in the “Example usage”
portion of the Hammer documentation.

4 Chapter 1. Hammer Basics

mailto:hammer-plugins-access@lists.berkeley.edu

Hammer, Release 1.0.0

1.1.4 Calling Hammer

To use Hammer on the command line, the designer will invoke the hammer-vlsi utility. This is calling the __main__()
method of the CLIDriver class. An example invocation is below:

hammer-vlsi -e env.yml -p config.yml --obj_dir build par

Using hooks requires the designer to extend the CLIDriver class. A good example exists in the Chipyard repository
(chipyard/vlsi/example-vlsi). This would change the invocation to something like the following:

example-vlsi -e env.yml -p config.yml --obj_dir build par

Hammer configuration files must be in YML or JSON format, and are divided into environment and project config-
urations. The environment configuration file, which in this case is env.yml, is passed to Hammer using the -e flag.
env.yml contains pointers to the required tool licenses and environment variables. The project configuration file is
passed in using the -p flag. In this case, there is only one, config.yml, and it needs to set all the required keys for
the step of the flow being run. Passing in multiple files looks like -p config1.yml -p config2.yml. Refer to the
Hammer IR and Meta Variables section for the implications of multiple config files. The environment settings take
precedence over all project configurations, and are not propagated to the output configuration files after each action.
The order of precedence for the project configs reads from right to left (i.e. each file overrides all files to its left in the
command line).

--obj_dir build designates what directory Hammer should use as a working directory. All default action run di-
rectories and output files will be placed here.

Finally, par designates that this is a place-and-route action.

In this case, Hammer will write outputs to the path $PWD/build/par-rundir.

For the full list of Hammer command-line arguments, run hammer-vlsi –help or take a peek in the hammer/vlsi/
cli_driver.py file.

1.1.5 Summary

The software architecture as described above is shown in the diagram below, which is taken from the Hammer DAC
paper.

1.1. Hammer Overview 5

https://github.com/ucb-bar/chipyard
https://dl.acm.org/doi/abs/10.1145/3489517.3530672
https://dl.acm.org/doi/abs/10.1145/3489517.3530672

Hammer, Release 1.0.0

1.2 Hammer Setup

Hammer depends on Python 3.9+.

The default technology, ASAP7, has some extra requirements. See its README for instructions.

1.2.1 User Setup

You can install Hammer from PyPI:

pip install hammer-vlsi

If you are using ASAP7, you need to install hammer-vlsi with the asap7 extra dependency (gdspy or gdstk). By default,
gdspy is installed:

pip install hammer-vlsi[asap7]

If instead, you want to install gdstk:

pip install hammer-vlsi[asap7-gdstk]

After installation, verify that you can run the hammer-vlsi script from the command line.

hammer-vlsi -h

6 Chapter 1. Hammer Basics

https://github.com/ucb-bar/hammer/blob/master/hammer/technology/asap7/README.md

Hammer, Release 1.0.0

Note: certain tools and technologies will have additional system requirements. For example, LVS with Netgen requires
Tcl/Tk 8.6, which is not installed for CentOS7/RHEL7 and below. Refer to each respective tool and technology’s
documentation for those requirements.

Installing Hammer as a Source Dependency

In some cases, it is useful to install Hammer as a source dependency. For instance, when developing tool or PDK
plugins alongside a new feature or API changes in main Hammer, installing hammer as a source dependency will allow
you to make changes in main hammer and see them reflected immediately when running code for your tool/PDK plugin.

From Another Poetry Project

Hammer tool (e.g. hammer-cadence-plugins) and PDK plugin repositories are poetry projects (with a pyproject.
toml in their root). To depend on Hammer as a source dependency, first clone Hammer somewhere on your disk. Then
add this snippet to the tool/PDK plugin repo’s pyproject.toml (and remove any PyPI dependency on Hammer):

[tool.poetry.dependencies]
#hammer-vlsi = "^1.0.0"
hammer-vlsi = {path = "path/to/hammer", extras = ["asap7"], develop = true}

Run poetry update and poetry install. Do not commit the changes to pyproject.toml or poetry.lock
without first removing the source dependency. You only need to specify extras if you need the asap7 optional
dependency (gdstk).

From a Generic Python Project

Other repos, such as Chipyard, are not poetry projects, but still depend on Hammer. To use Hammer as a source
dependency:

1. Remove the PyPI hammer-vlsi dependency from the project (e.g. by editing a conda env.yml file and rerunning
dependency resolution)

2. Clone Hammer somewhere on your disk

3. Activate the virtualenv of the project (e.g. Chipyard)

4. Run pip install -e . from the root of Hammer within the project’s virtualenv

1.2.2 Developer Setup

1. Clone Hammer with git

git clone git@github.com:ucb-bar/hammer
cd hammer

2. Install poetry to manage the development virtualenv and dependencies

curl -sSL https://install.python-poetry.org | python3 -

3. Create a poetry-managed virtualenv using the dependencies from pyproject.toml

1.2. Hammer Setup 7

https://python-poetry.org/docs/master/

Hammer, Release 1.0.0

create the virtualenv inside the project folder (in .venv)
poetry config virtualenvs.in-project true
poetry install

4. Activate the virtualenv. Within the virtualenv, Hammer is installed and you can access its scripts defined in
pyproject.toml (in [tool.poetry.scripts])

poetry shell
hammer-vlsi -h

Using PyCharm

This project works out of the box with PyCharm. You should install the Pydantic plugin to enable autocomplete for
Pydantic BaseModels.

Unit Tests with pytest

Within the poetry virtualenv, from the root of Hammer, run the tests (-v will print out each test name explicitly)

pytest tests/ -v

If you want to skip the single long running-test in test_stackup.py:

pytest tests/ -m "not long" -v

If you want to run only a specific test use -k with a snippet of the test function you want to run:

pytest tests/ -k "lsf" -v

> tests/test_submit_command.py::TestSubmitCommand::test_lsf_submit[lsf] PASSED

By default, pytest will only display what a test prints to stdout if the test fails. To display stdout even for a passing
test, use -rA:

pytest tests/test_build_systems.py -k "flat_makefile" -rA -v

> __________________ TestHammerBuildSystems.test_flat_makefile _________________
> ---------------------------- Captured stdout call ----------------------------
> [<global>] Loading hammer-vlsi libraries and reading settings
> [<global>] Loading technology 'nop'
> =========================== short test summary info ==========================
> PASSED tests/test_build_systems.py::TestHammerBuildSystems::test_flat_makefile

8 Chapter 1. Hammer Basics

https://plugins.jetbrains.com/plugin/12861-pydantic

Hammer, Release 1.0.0

Type Checking with mypy

There is a small issue with the ruamel.yaml package typechecking which can be hacked around with:

touch .venv/lib/python3.10/site-packages/ruamel/py.typed

Inside your poetry virtualenv, from the root of Hammer, run:

mypy --namespace-packages --warn-unused-ignores -p hammer

Success: no issues found in 146 source files

mypy --namespace-packages --warn-unused-ignores tests

Success: no issues found in 25 source files

Testing Different Python Versions with tox

Hammer is supposed to work with Python 3.9+, so we run its unit tests on all supported Python versions using tox and
pyenv.

1. Install pyenv

curl https://pyenv.run | bash

Restart your shell and run pyenv init (and follow any of its instructions). Then restart your shell again.

2. Install Python versions

See the .python-version file at the root of hammer and install those Python versions using pyenv.

pyenv install 3.9.13
pyenv install 3.10.6

Once the Python interpreters are installed, run pyenv versions from the root of hammer.

pyenv versions
system

* 3.9.13 (set by .../hammer/.python-version)
* 3.10.6 (set by .../hammer/.python-version)

3. From within your poetry virtualenv, run tox

tox

This will run the pytest unit tests using all the Python versions specified in pyproject.toml under the [tool.tox]
key.

You can run tests only on a particular environment with -e

tox -e py39 # only run tests on Python 3.9

You can pass command line arguments to the pytest invocation within a tox virtualenv with --

tox -e py39 -- -k "lsf" -v

1.2. Hammer Setup 9

https://github.com/python/mypy/issues/12664
https://github.com/pyenv/pyenv-installer

Hammer, Release 1.0.0

Adding / Updating Dependencies

To add a new Python (pip) dependency, modify pyproject.toml. If the dependency is only used for develop-
ment, add it under the key [tool.poetry.dev-dependencies], otherwise add it under the key [tool.poetry.
dependencies]. Then run poetry update and poetry install. The updated poetry.lock file should be com-
mitted to Hammer.

To update an existing dependency, modify pyproject.toml with the new version constraint. Run poetry update
and poetry install and commit poetry.lock.

Building Documentation

• Within your poetry virutualenv, cd doc

• Modify any documentation files. You can migrate any rst file to Markdown if desired.

• Run sphinx-build . build

• The generated HTML files are placed in build/

• Open them in your browser firefox build/index.html

Publishing

Build a sdist and wheel (results are in dist):

poetry build

To publish on TestPyPI:

1. Create an account on TestPyPi

2. Note the source repository testpypi in pyproject.toml under the key [tool.poetry.source]

• To add another PyPI repository to poetry: poetry source add <source name> <source url>

3. Publish: poetry publish --repository testpypi -u <username> -p <password>

1.3 Migration Guide

Hammer’s software infrastructure changed significantly for version 1.0.0. In order to use the latest version of Hammer,
you will need to make changes to your existing tool/tech plugins, YML/JSON input files, and Python files that import
Hammer.

This guide is relevant for both plugin developers and general users.

The documentation for old Hammer is cached here.

10 Chapter 1. Hammer Basics

https://test.pypi.org/
https://python-poetry.org/docs/master/repositories/
https://hammer-vlsi.readthedocs.io/en/0.1.0/

Hammer, Release 1.0.0

1.3.1 Selecting Plugins

Previously, tech and tool plugins were selected with a combination of tool name and relative plugin path:

vlsi.core.technology: <tech_name>
vlsi.core.technology_path: ["hammer-<tech_name>-plugin"]
vlsi.core.technology_path_meta: append

vlsi.core.synthesis_tool: <syn_tool_name>
vlsi.core.synthesis_tool_path: ["hammer-<vendor>-plugin/syn"]
vlsi.core.synthesis_tool_meta: append

Now, you simply need to specify the package name:

vlsi.core.technology: hammer.technology.<tech_name>

vlsi.core.synthesis_tool: hammer.synthesis.<syn_tool_name>

The package name is defined by the file structure of the plugin package. See the Plugin File Structure section below
for details.

1.3.2 import Statements

When importing Hammer classes and/or methods, replace old statements:

import hammer_tech
from hammer_vlsi import HammerTool

with:

import hammer.tech
from hammer.vlsi import HammerTool

The rule of thumb is that underscores are replaced with periods. This will match the package directory structure under
the hammer/ directory.

1.3.3 Technology JSON

Previously, the technology JSON file may have contained entries like this:

"gds map file": "path/to/layermap.file"

Now, keys must not contain spaces in line with JSON syntax:

"gds_map_file": "path/to/layermap.file"

The fields for installs and tarballs have also changed. Generally, path is now id and base var is now path to
remove confusion. For example, previously (ASAP7 example for reference):

"installs": [
{
"path": "$PDK",
"base var": "technology.asap7.pdk_install_dir"

(continues on next page)

1.3. Migration Guide 11

Hammer, Release 1.0.0

(continued from previous page)

}
],
"tarballs": [
{
"path": "ASAP7_PDK_CalibreDeck.tar",
"homepage": "http://asap.asu.edu/asap/",
"base var": "technology.asap7.tarball_dir"

}
]

is now:

"installs": [
{
"id": "$PDK",
"path": "technology.asap7.pdk_install_dir"

}
],
"tarballs": [
{
"root": {
"id": "ASAP7_PDK_CalibreDeck.tar",
"path": "technology.asap7.tarball_dir"

},
"homepage": "http://asap.asu.edu/asap/",
"optional": true

}
]

1.3.4 Plugin File Structure

Plugins previously did not have a file structure requirement. For example, it could have looked like this:

mytech/
__init__.py
defaults.yml
mytech.tech.json
layer.map # some tech-specific file

action/
action_tool/

__init__.py # contains action_tool-specific hooks for mytech technology
tool.options # some tech-specific file needed by this tool

The new structure must follow Python package convention, hence it will look as follows:

hammer/
mytech/

__init__.py
defaults.yml
mytech.tech.json
layer.map # some tech-specific file

(continues on next page)

12 Chapter 1. Hammer Basics

Hammer, Release 1.0.0

(continued from previous page)

action/
action_tool/

__init__.py # contains action_tool-specific hooks for mytech technology
tool.options # some tech-specific file needed for this tool

In this case, the technology package name is hammer.mytech (note that standalone plugin repositories may not be
hammer.technology.mytech, unlike the ones included in the main Hammer repository).

1.3.5 Resource Files

Technology plugins will often provide special static files needed by tools, such as the layer.map file in the above
example. If this file is already specified with the prependlocal meta action, the behavior will remain the same:

action.tool.layer_map: "layer.map"
action.tool.layer_map_meta: prependlocal

However, within a plugin, if you need to access to a specific file for a tool-specific hook, for example, in action/
action_tool/__init__.py, replace this:

with open(os.path.join(self.tool_dir, "tool.options")) as f:

With this and append Pathlib methods like read_text() as required:

importlib.resources.files(self.package).joinpath("tool.options")

1.3.6 pyproject.toml

Plugins that are repositories separate from Hammer must now have a pyproject.toml file so that they become poetry
projects. Refer to From Another Poetry Project for details.

1.3. Migration Guide 13

Hammer, Release 1.0.0

14 Chapter 1. Hammer Basics

CHAPTER

TWO

HAMMER TECHNOLOGY PLUGINS

This guide will walk you through how to set up a technology plugin to be used in Hammer.

You may use the included free ASAP7 PDK or the open-source Sky130 PDK plugins as reference when building your
own technology plugin.

Technology plugins must be structured as Python packages underneath the hammer package. The package should
contain an class object named tech to create an instance of the technology. This object should be a subclass of
HammerTechnology.

Technology plugins must also have .tech.json and defaults.yml files. See the following sections for how to write
them.

2.1 Hammer Technologies

Hammer currently has open-source technology plugins in the hammer/technology folder. Other proprietary technol-
ogy plugins cannot be made public without 3-way NDAs or special agreements with their respective foundries.

The structure of each technology plugin package is as follows:

• hammer

– TECHNOLOGY_NAME

∗ __init__.py contains the tech class object and methods for PDK installation/extraction and getting
hooks.

∗ <name>.tech.json contains the static information about the technology. See the section Hammer
Tech JSON for a guide.

∗ defaults.yml contains the default tech-specific Hammer IR and Meta Variables. See the section
Hammer Tech defaults.yml for a guide.

∗ ACTION_NAME

· __init__.py (optional) can contain a technology’s implementation of an action. Commonly, this
is used for the SRAM compilation action.

· TOOL_NAME

· __init__.py (optional) contains callable hook methods specific to the technology and tool, if
there are too many to put in TECHNOLOGY_NAME/__init__.py.

Resources that are needed may go in this directory structure where necessary.

15

https://github.com/ucb-bar/hammer/tree/master/hammer/technology/asap7
https://github.com/ucb-bar/hammer/tree/master/hammer/technology/sky130

Hammer, Release 1.0.0

2.1.1 HammerTechnology Class

The HammerTechnology class is the base class that all technology plugins should inherit from and is defined in hammer/
tech/__init__.py. Particularly useful methods are:

• post_install_script: the plugin subclass should override this method to apply any non-default PDK instal-
lation steps or hotfixes in order to set up the technology libraries for use with Hammer.

• read_libs: this is a particularly powerful method to read the libraries contained in the tech.json file and filter
them using the filters also contained the same file. See the Library Filters section for details.

• get_tech_<action>_hooks: these methods are necessary if tech–specific hooks are needed, and must return a
list of hooks when a given tool name implementing the relevant action is called. Refer to the Extending Hammer
with Hooks section for details about how to write hooks.

2.2 Hammer Tech JSON

The tech.json for a given technology sets up some general information about the install of the PDK, sets up DRC
rule decks, sets up pointers to PDK files, and supplies technology stackup information. For the full schema of the
tech JSON, please see the Full Schema section below, which is derived from the TechJSON Pydantic BaseModel in
hammer/tech/__init__.py.

2.2.1 Technology Install

The user may supply the PDK to Hammer as an already extracted directory and/or as a tarball that Hammer can au-
tomatically extract. Setting technology.TECH_NAME. install_dir and/or tarball_dir (key is setup in the de-
faults.yml) will fill in as the path prefix for paths supplied to PDK files in the rest of the tech.json. Below is an
example of the installs and tarballs from the ASAP7 plugin.

"name": "ASAP7 Library",
"grid_unit": "0.001",
"installs": [
{
"id": "$PDK",
"path": "technology.asap7.pdk_install_dir"

},
{
"id": "$STDCELLS",
"path": "technology.asap7.stdcell_install_dir"

}
],
"tarballs": [
{
"root": {
"id": "ASAP7_PDK_CalibreDeck.tar",
"path": "technology.asap7.tarball_dir"

},
"homepage": "http://asap.asu.edu/asap/",
"optional": true

}
],

16 Chapter 2. Hammer Technology Plugins

Hammer, Release 1.0.0

The id field is used within the file listings further down in the file to prefix path, as shown in detail below. If the file
listing begins with cache, then this denotes files that exist in the tech cache, which are generally placed there by the
tech plugin’s post-installation script (see ASAP7’s post_install_script method). Finally, the encrypted Calibre
decks are provided in a tarball and denoted as optional.

2.2.2 DRC/LVS Deck Setup

As many DRC & LVS decks for as many tools can be specified in the drc decks and lvs decks keys. Additional
DRC/LVS commands can be appended to the generated run files by specifying raw text in the additional_drc_text
and additional_lvs_text keys. Below is an example of an LVS deck from the ASAP7 plugin.

"lvs_decks": [
{
"tool_name": "calibre",
"deck_name": "all_lvs",
"path": "ASAP7_PDK_CalibreDeck.tar/calibredecks_r1p7/calibre/ruledirs/lvs/lvsRules_

→˓calibre_asap7.rul"
}

],
"additional_lvs_text": "LVS SPICE EXCLUDE CELL *SRAM*RW*\"\nLVS BOX \"SRAM*RW*\"\nLVS␣
→˓FILTER *SRAM*RW*\" OPEN",

The file pointers, in this case, use the tarball prefix because Hammer will be extracting the rule deck directly from the
ASAP7 tarball. The additional text is needed to tell Calibre that the dummy SRAM cells need to be filtered from the
source netlist and boxed and filtered from the layout.

2.2.3 Library Setup

The libraries key also must be setup in the JSON plugin. This will tell Hammer where to find all of the relevant
files for standard cells and other blocks for the VLSI flow. Below is an example of the start of the library setup and one
entry from the ASAP7 plugin.

"libraries": [
{
"lef_file": "$STDCELLS/techlef_misc/asap7_tech_4x_201209.lef",
"provides": [
{
"lib_type": "technology"

}
]

},
{
"nldm_liberty_file": "$STDCELLS/LIB/NLDM/asap7sc7p5t_SIMPLE_RVT_TT_nldm_201020.lib.gz

→˓",
"verilog_sim": "$STDCELLS/Verilog/asap7sc7p5t_SIMPLE_RVT_TT_201020.v",
"lef_file": "$STDCELLS/LEF/scaled/asap7sc7p5t_27_R_4x_201211.lef",
"spice_file": "$STDCELLS/CDL/LVS/asap7sc7p5t_27_R.cdl",
"gds_file": "$STDCELLS/GDS/asap7sc7p5t_27_R_201211.gds",
"qrc_techfile": "$STDCELLS/qrc/qrcTechFile_typ03_scaled4xV06",
"spice_model_file": {
"path": "$PDK/models/hspice/7nm_TT.pm"

},
(continues on next page)

2.2. Hammer Tech JSON 17

Hammer, Release 1.0.0

(continued from previous page)

"corner": {
"nmos": "typical",
"pmos": "typical",
"temperature": "25 C"

},
"supplies": {
"VDD": "0.70 V",
"GND": "0 V"

},
"provides": [

{
"lib_type": "stdcell",
"vt": "RVT"

}
]

},

The file pointers, in this case, use the $PDK and $STDCELLS prefix as defined in the installs. The corner key tells
Hammer what process and temperature corner that these files correspond to. The supplies key tells Hammer what
the nominal supply for these cells are. The provides key has several sub-keys that tell Hammer what kind of library this
is (examples include stdcell, fiducials, io pad cells, bump, and level shifters) and the threshold voltage
flavor of the cells, if applicable. Adding the tech LEF for the technology with the lib_type set as technology is
necessary for place and route.

Library Filters

Library filters are defined in the LibraryFilter class in hammer/tech/__init__.py. These allow you to filter the
entire set of libraries based on specific conditions, such as a file type or corner. Additional functions can be used to
extract paths, strings, sort, and post-process the filtered libraries.

For a list of pre-built library filters, refer to the properties in the LibraryFilterHolder class in the same file, accessed
as hammer.tech.filters.<filter_method>

2.2.4 Stackup

The stackups sets up the important metal layer information for Hammer to use. Below is an example of one metal
layer in the metals list from the ASAP7 example tech plugin.

{"name": "M3", "index": 3, "direction": "vertical", "min_width": 0.072, "pitch": 0.144,
→˓"offset": 0.0, "power_strap_widths_and_spacings": [{"width_at_least": 0.0, "min_spacing
→˓": 0.072}], "power_strap_width_table": [0.072, 0.36, 0.648, 0.936, 1.224, 1.512]}

All this information is typically taken from the tech LEF and can be automatically filled in with a script. The metal layer
name and layer number is specified. direction specifies the preferred routing direction for the layer. min_width and
pitch specify the minimum width wire and the track pitch, respectively. power_strap_widths_and_spacings is a
list of pairs that specify design rules relating to the widths of wires and minimum required spacing between them. This
information is used by Hammer when drawing power straps to make sure it is conforming to some basic design rules.

18 Chapter 2. Hammer Technology Plugins

Hammer, Release 1.0.0

2.2.5 Sites

The sites field specifies the unit standard cell size of the technology for Hammer.

"sites": [
{"name": "asap7sc7p5t", "x": 0.216, "y": 1.08}

]

This is an example from the ASAP7 tech plugin in which the name parameter specifies the core site name used in the
tech LEF, and the x and y parameters specify the width and height of the unit standard cell size, respectively.

2.2.6 Special Cells

The special_cells field specifies a set of cells in the technology that have special functions. The example below
shows a subset of the ASAP7 tech plugin for 2 types of cells: tapcell and stdfiller.

"special_cells": [
{"cell_type": "tapcell", "name": ["TAPCELL_ASAP7_75t_L"]},
{"cell_type": "stdfiller", "name": ["FILLER_ASAP7_75t_R", "FILLER_ASAP7_75t_L",

→˓"FILLER_ASAP7_75t_SL", "FILLER_ASAP7_75t_SRAM", "FILLERxp5_ASAP7_75t_R", "FILLERxp5_
→˓ASAP7_75t_L", "FILLERxp5_ASAP7_75t_SL", "FILLERxp5_ASAP7_75t_SRAM"]},

See the SpecialCell subsection in the Full Schema for a list of special cell types. Depending on the tech/tool, some
of these cell types can only have 1 cell in the name list.

There is an optional size list. For each element in its corresponding name list, a size (type: str) can be given. An
example of how this is used is for decap cells, where each listed cell has a typical capacitance, which a place and route
tool can then use to place decaps to hit a target total decapacitance value. After characterizing the ASAP7 decaps using
Voltus, the nominal capacitance is filled into the size list:

{"cell_type": "decap", "name": ["DECAPx1_ASAP7_75t_R", "DECAPx1_ASAP7_75t_L", "DECAPx1_
→˓ASAP7_75t_SL", "DECAPx1_ASAP7_75t_SRAM", "DECAPx2_ASAP7_75t_R", "DECAPx2_ASAP7_75t_L",
→˓"DECAPx2_ASAP7_75t_SL", "DECAPx2_ASAP7_75t_SRAM", "DECAPx2b_ASAP7_75t_R", "DECAPx2b_
→˓ASAP7_75t_L", "DECAPx2b_ASAP7_75t_SL", "DECAPx2b_ASAP7_75t_SRAM", "DECAPx4_ASAP7_75t_R
→˓", "DECAPx4_ASAP7_75t_L", "DECAPx4_ASAP7_75t_SL", "DECAPx4_ASAP7_75t_SRAM", "DECAPx6_
→˓ASAP7_75t_R", "DECAPx6_ASAP7_75t_L", "DECAPx6_ASAP7_75t_SL", "DECAPx6_ASAP7_75t_SRAM",
→˓"DECAPx10_ASAP7_75t_R", "DECAPx10_ASAP7_75t_L", "DECAPx10_ASAP7_75t_SL", "DECAPx10_
→˓ASAP7_75t_SRAM"], "size": ["0.39637 fF", "0.402151 fF", "0.406615 fF", "0.377040 fF",
→˓"0.792751 fF", "0.804301 fF", "0.813231 fF", "0.74080 fF", "0.792761 fF", "0.804309 fF
→˓", "0.813238 fF","0.75409 fF", "1.5855 fF", "1.6086 fF", "1.62646 fF", "1.50861 fF",
→˓"2.37825 fF", "2.4129 fF", "2.43969 fF", "2.26224 fF", "3.96376 fF", "4.02151 fF", "4.
→˓06615 fF", "3.7704 fF"]},

2.2.7 Don’t Use, Physical-Only Cells

The dont_use_list is used to denote cells that should be excluded due to things like bad timing models or layout.
The physical_only_cells_list is used to denote cells that contain only physical geometry, which means that they
should be excluded from netlisting for simulation and LVS. Examples from the ASAP7 plugin are below:

"dont_use_list": [
"ICGx*DC*",
"AND4x1*",

(continues on next page)

2.2. Hammer Tech JSON 19

Hammer, Release 1.0.0

(continued from previous page)

"SDFLx2*",
"AO21x1*",
"XOR2x2*",
"OAI31xp33*",
"OAI221xp5*",
"SDFLx3*",
"SDFLx1*",
"AOI211xp5*",
"OAI322xp33*",
"OR2x6*",
"A2O1A1O1Ixp25*",
"XNOR2x1*",
"OAI32xp33*",
"FAx1*",
"OAI21x1*",
"OAI31xp67*",
"OAI33xp33*",
"AO21x2*",
"AOI32xp33*"

],
"physical_only_cells_list": [

"TAPCELL_ASAP7_75t_R", "TAPCELL_ASAP7_75t_L", "TAPCELL_ASAP7_75t_SL", "TAPCELL_ASAP7_
→˓75t_SRAM",
"TAPCELL_WITH_FILLER_ASAP7_75t_R", "TAPCELL_WITH_FILLER_ASAP7_75t_L", "TAPCELL_WITH_

→˓FILLER_ASAP7_75t_SL", "TAPCELL_WITH_FILLER_ASAP7_75t_SRAM",
"FILLER_ASAP7_75t_R", "FILLER_ASAP7_75t_L", "FILLER_ASAP7_75t_SL", "FILLER_ASAP7_75t_

→˓SRAM",
"FILLERxp5_ASAP7_75t_R", "FILLERxp5_ASAP7_75t_L", "FILLERxp5_ASAP7_75t_SL", "FILLERxp5_

→˓ASAP7_75t_SRAM"
],

2.2.8 Full Schema

Note that in the the schema tables presented below, items with #/definitions/<class_name> are defined in other
schema tables. This is done for documentation clarity, but in your JSON file, those items would be hierarchically nested.

TechJSON

type object
properties

• name Name
type string

• grid_unit Grid Unit
type string

• shrink_factor Shrink Factor
type string

• installs Installs
type array

continues on next page

20 Chapter 2. Hammer Technology Plugins

Hammer, Release 1.0.0

Table 1 – continued from previous page
items #/definitions/PathPrefix

• libraries Libraries
type array
items #/definitions/Library

• gds_map_file Gds Map File
type string

• physi-
cal_only_cells_list

Physical Only Cells List
type array
items type string

• dont_use_list Dont Use List
type array
items type string

• drc_decks Drc Decks
type array
items #/definitions/DRCDeck

• lvs_decks Lvs Decks
type array
items #/definitions/LVSDeck

• tarballs Tarballs
type array
items #/definitions/Tarball

• sites Sites
type array
items #/definitions/Site

• stackups Stackups
type array
items #/definitions/Stackup

• special_cells Special Cells
type array
items #/definitions/SpecialCell

• extra_prefixes Extra Prefixes
type array
items #/definitions/PathPrefix

• additional_lvs_text Additional Lvs Text
type string

• additional_drc_text Additional Drc Text
type string

PathPrefix

A path prefix which defines an identifier and its corresponding path.
Example: A PathPrefix(id = “Alib”, path = “/scratch/projectA/mylib”) maps the identifier

‘Alib’ to the path ‘/scratch/projectA/mylib’
type object
properties

• id Id
type string

• path Path
type string

2.2. Hammer Tech JSON 21

Hammer, Release 1.0.0

Corner

type object
properties

• nmos Nmos
type string

• pmos Pmos
type string

• temperature Temperature
type string

MinMaxCap

type object
properties

• max_cap Max Cap
type string

• min_cap Min Cap
type string

Provide

type object
properties

• lib_type Lib Type
type string

• vt Vt
type string

Supplies

type object
properties

• GND Gnd
type string

• VDD Vdd
type string

22 Chapter 2. Hammer Technology Plugins

Hammer, Release 1.0.0

SpiceModelFile

type object
properties

• path Path
type string

• lib_corner Lib Corner
type string

Library

type object
properties

• name Name
type string

• ccs_liberty_file Ccs Liberty File
type string

• ccs_library_file Ccs Library File
type string

• ecsm_liberty_file Ecsm Liberty File
type string

• ecsm_library_file Ecsm Library File
type string

• corner
#/definitions/Corner

• itf_files
#/definitions/MinMaxCap

• lef_file Lef File
type string

• klayout_techfile Klayout Techfile
type string

• spice_file Spice File
type string

• gds_file Gds File
type string

• milkyway_lib_in_dir Milkyway Lib In Dir
type string

• milkyway_techfile Milkyway Techfile
type string

• nldm_liberty_file Nldm Liberty File
type string

• nldm_library_file Nldm Library File
type string

• openaccess_techfile Openaccess Techfile
type string

• provides Provides
type array

continues on next page

2.2. Hammer Tech JSON 23

Hammer, Release 1.0.0

Table 2 – continued from previous page
items #/definitions/Provide

• qrc_techfile Qrc Techfile
type string

• supplies
#/definitions/Supplies

• tluplus_files
#/definitions/MinMaxCap

• tluplus_map_file Tluplus Map File
type string

• verilog_sim Verilog Sim
type string

• verilog_synth Verilog Synth
type string

• spice_model_file
#/definitions/SpiceModelFile

• power_grid_library Power Grid Library
type string

• extra_prefixes Extra Prefixes
type array
items #/definitions/PathPrefix

DRCDeck

type object
properties

• tool_name Tool Name
type string

• deck_name Deck Name
type string

• path Path
type string

LVSDeck

type object
properties

• tool_name Tool Name
type string

• deck_name Deck Name
type string

• path Path
type string

24 Chapter 2. Hammer Technology Plugins

Hammer, Release 1.0.0

Tarball

type object
properties

• root #/definitions/PathPrefix

• homepage Homepage
type string

• optional Optional
type boolean
default False

Site

A standard cell site, which is the minimum unit of x and y dimensions a standard cell can have.
name: The name of this site (often something like “core”) as defined in the tech and standard cell LEFs x: The x
dimension y: The y dimension
type object
properties

• name Name
type string

• x X
type number

• y Y
type number

RoutingDirection

Represents a preferred routing direction for a metal layer. Note that this represents a preferred direction, not a DRC
rule.
type string
enum vertical, horizontal, redistribution

WidthSpacingTuple

A tuple of wire width limit and spacing for generating a piecewise linear rule for spacing based on wire width.
width_at_least: Any wires larger than this must obey the minSpacing rule. min_spacing: The minimum spacing for
this bin.

If a wire is wider than multiple entries, the worst-case (larger) minSpacing wins.
type object
properties

• width_at_least Width At Least
type number

• min_spacing Min Spacing
type number

2.2. Hammer Tech JSON 25

Hammer, Release 1.0.0

Metal

A metal layer and some basic info about it.
name: Metal layer name (e.g. M1, M2). index: The order in the stackup (lower is closer to the substrate). direction:
The preferred routing direction of this metal layer, or

RoutingDirection.Redistribution for non-routing top-level redistribution metals like Aluminium.
min_width: The minimum wire width for this layer. max_width: The maximum wire width for this layer. pitch:
The minimum cross-mask pitch for this layer (NOT same-mask pitch

for multiple-patterned layers). Width of routing grid for a given layer. To route denser wires on chip,
multiple masks are required. During fabrication, the masks are applied separately with some spatial
offsets to achieve denser line patterning. For more information on multiple-patterning, check https:
//en.wikipedia.org/wiki/Multiple_patterning

offset: The routing track offset from the origin for the first track in this layer.
(0 = first track is on an axis).

power_strap_widths_and_spacings: A list of WidthSpacingTuples that specify the minimum
spacing rules for an infinitely long wire of variying width.

power_strap_width_table: A list of allowed metal widths in the technology.
Widths smaller than the last number must be quantized to a value in the table.

grid_unit: The fixed-point decimal value of a minimum grid unit (e.g. 1nm = 0.001).
For most technologies, this comes from the technology plugin and is the same for all layers.

type object
properties

• name Name
type string

• index Index
type integer

• direction #/definitions/RoutingDirection

• min_width Min Width
type number

• max_width Max Width
type number

• pitch Pitch
type number

• offset Offset
type number

•
power_strap_widths_and_spacings

Power Strap Widths And Spacings
type array
items #/definitions/WidthSpacingTuple

•
power_strap_width_table

Power Strap Width Table
type array
default
items type number

• grid_unit Grid Unit
type number

26 Chapter 2. Hammer Technology Plugins

https://en.wikipedia.org/wiki/Multiple_patterning
https://en.wikipedia.org/wiki/Multiple_patterning

Hammer, Release 1.0.0

Stackup

A stackup is a list of metals with a meaningful keyword name (for now).
TODO: add vias, etc when we need them
type object
properties

• grid_unit Grid Unit
type number

• name Name
type string

• metals Metals
type array
items #/definitions/Metal

CellType

An enumeration.
type string
enum tiehicell, tielocell, tiehilocell, endcap, iofiller, stdfiller, decap, tapcell, driver, ctsbuffer, ctsinverter, cts-

gate, ctslogic

SpecialCell

type object
properties

• cell_type #/definitions/CellType

• name Name
type array
items type string

• size Size
type array
items type string

• input_ports Input Ports
type array
items type string

• output_ports Output Ports
type array
items type string

2.2. Hammer Tech JSON 27

Hammer, Release 1.0.0

2.3 Hammer Tech defaults.yml

The defaults.yml for a technology specifies some technology-specific Hammer IR and Meta Variables that should
be left as default unless you desire to override them. Some of the them work directly with the keys in the tech.json.

Most of the keys in the defaults.yml are a part of the vlsi and technology namespaces. An example of the setup
of the defaults.yml is located in hammer/technology/asap7/defaults.yml and certain important keys should
be common to most technology plugins:

• vlsi.core.node defines the node that the place-and-route tool expects. It affects what kind of licenses are
needed.

• vlsi.inputs should at least have the nominal supplies and a typical pair of characterized setup & hold corners.

• vlsi.technology needs to specify a placement_site as defined in the technology LEF, a
bump_block_cut_layer to set blockages under bumps, and optional tap_cell_interval and
tap_cell_offset for placing well taps.

• technology.core needs to specify the stackup to use, which layer the standard cell power rails are on, and a
reference cell to draw the lowest layer power rails over.

Tool environment variables (commonly needed for DRC/LVS decks) and other necessary default options specific to the
technology should be set in this file. This file can also define technology-specific Hammer IR, in the the namespace
technlogy.<tech_name>.<key_name>. As always, they can be overriden by other snippets of Hammer IR.

The data types for all keys in defaults.yml can be found in defaults_types.yml. When adding or overriding to
defaults.yml, make sure that said data types are updated accordingly to prevent problems with the type checker.

2.4 Sky130 Technology Library

Hammer supports the Skywater 130nm Technology process. The SkyWater Open Source PDK is a collaboration
between Google and SkyWater Technology Foundry to provide a fully open source Process Design Kit (PDK) and
related resources, which can be used to create manufacturable designs at SkyWater’s facility.

2.4.1 PDK Setup

The Skywater 130nm PDK files are located in a repo called skywater-pdk. A tool called Open-PDKs (open_pdks)
was developed to generate all the files typically found in a PDK. Open-PDKs uses the contents in skywater-pdk, and
outputs files to a directory called sky130A.

PDK Install

create a root directory that will contain all PDK files and supporting tools (install␣
→˓size is ~42GB)
export PREFIX=/path/to/install/root
mkdir -p $PREFIX
cd $PREFIX

install magic via conda, required for open_pdks
conda create -y -c litex-hub --prefix $PREFIX/.conda-signoff magic
export PATH=$PREFIX/.conda-signoff/bin:$PATH

(continues on next page)

28 Chapter 2. Hammer Technology Plugins

https://skywater-pdk.readthedocs.io/
https://github.com/google/skywater-pdk/
https://github.com/RTimothyEdwards/open_pdks/

Hammer, Release 1.0.0

(continued from previous page)

clone required repos
git clone https://github.com/google/skywater-pdk.git
git clone https://github.com/RTimothyEdwards/open_pdks.git

install Sky130 PDK via Open-PDKs
we disable some install steps to save time
cd $PREFIX/open_pdks
./configure \

--enable-sky130-pdk=${PREFIX}/skywater-pdk/libraries --prefix=$PREFIX \
--disable-gf180mcu-pdk --disable-alpha-sky130 --disable-xschem-sky130 --disable-

→˓primitive-gf180mcu \
--disable-verification-gf180mcu --disable-io-gf180mcu --disable-sc-7t5v0-gf180mcu \
--disable-sc-9t5v0-gf180mcu --disable-sram-gf180mcu --disable-osu-sc-gf180mcu

make
make install

This generates all the Sky130 PDK files and installs them to $PREFIX/share/pdk/sky130A

Now in your Hammer YAML configs, point to the location of this install:

technology.sky130.sky130A: "<PREFIX>/share/pdk/sky130A"

2.4.2 SRAM Macros

If you are using SRAMs in your design, such as for the Chipyard Sky130 tutorial, you will require a set of SRAM
macros. The Sky130 PDK did not come with it’s own SRAM macros, so these have been generated by various third-
party contributors. Hammer is compatible with Sky130 SRAM macros generated by Sram22 and OpenRAM, but
starting with Hammer v1.0.2 only Sram22 macros will be supported. To obtain these macros, clone their github repo:

git clone https://github.com/rahulk29/sram22_sky130_macros

Then set the respective Hammer YAML key:

technology.sky130.sram22_sky130_macros: "/path/to/sram22_sky130_macros"

Note that the various configurations of the SRAMs available are encoded in the file sram-cache.json. To mod-
ify this file to include different configurations, or switch to using the OpenRAM SRAMs, navigate to ./extra/
[sram22|openram] and run the script ./sram-cache-gen.py for usage information.

2.4.3 IO Library

The IO ring required by efabless for MPW/ChipIgnite can be created in Innovus using the sky130_fd_io and
sky130_ef_io IO cell libraries. Here are the steps to use them:

1. extra/efabless_template.io is a template IO file. You should modify this by replacing the <inst_path>s
with the netlist paths to your GPIO & analog pads. DO NOT MODIFY ANY POSITIONS OR REPLACE
CLAMP CELLS WITH IO CELLS.

a. For pad assignment: the ordering in the instance lists are from left to right (for top/bottom edges) and bottom
to top (for left/right edges).

b. Refer to this documentation for how to configure the pins of the IO cells (not exhaustive).

2.4. Sky130 Technology Library 29

https://chipyard.readthedocs.io/en/stable/VLSI/Sky130-Commercial-Tutorial.html
https://github.com/rahulk29/sram22_sky130_macros
https://github.com/efabless/sky130_sram_macros
https://skywater-pdk.readthedocs.io/en/main/contents/libraries/sky130_fd_io/docs/user_guide.html

Hammer, Release 1.0.0

c. Your chip reset signal must go thru the xres4v2 cell. Since this is in your netlist, you must remove the cell=.
.. instantiation from your IO file (it is only in the template for clarity) and update the inst name. Otherwise a
separate instance will be placed instead.

d. The ENABLE_INP_H pin must be hard-tied to TIE_HI_ESD or TIE_LO_ESD. Since this is at a higher voltage,
verify that this is routed as a wire only (no buffers can be inserted).

e. ENABLE_H must be low at chip startup before going high. Absent using the power detector cell from the NDA
IO library, you may elect to connect this to a reset signal.

f. This template file does not contain dedicated clamps for the VSWITCH or VCCHIB supplies (following Caravel).
EFabless provides a sky130_ef_io__connect_vcchib_vccd_and_vswitch_vddio_slice_20um slice in
open_pdks that replaces a standard 20um spacer with a slice that connects VCCHIB and VCCD together, and
VSWITCH and VDDIO together. Note that this slice cannot be placed immediately to the right (in the R0 orientation)
of a *_clamped3_pad cell, because otherwise they will create a supply short. The template IO file contains
normal 20um spacer slices explicitly placed at these critical locations, and the provided hook instantiates the
connect slice in place of the standard 20um spacer. This can be modified if desired. Caravel distributes the
connect slices across the bottom edge of the padframe.

2. Then, in your design YAML file, specify your IO file with the following. The top-level constraint must be exactly
as below:

technology.sky130.io_file: <path/to/ring.io>
technology.sky130.io_file_meta: prependlocal

path: Top
type: toplevel
x: 0
y: 0
width: 3588
height: 5188
margins:
left: 249.78
right: 249.78
top: 252.08
bottom: 252.08

3. In your CLIDriver, you must import the following hook from the tech plugin and insert it as a
post_insertion_hook after floorplan_design.

from hammer.technology.sky130 import efabless_ring_io

In addition, to ensure ties to TIE_HI_ESD / TIE_LO_ESD are preserved during synthesis, a
post_insertion_hook to init_environment should be added to dont_touch the IO cells

def donttouch_iocells(x: HammerTool) -> bool:
x.append('set_dont_touch [get_db insts -if {.base_cell.name == sky130_ef_io__*}

→˓] true')
return True

4. If you want to use the NDA s8iom0s8 library, you must include the s8io.yml file with -p on the hammer-vlsi
command line, and then change the cells to that library in the IO file. Net names in the hook above will need to
be lower-cased.

5. DRC requires a rectangle of areaid.lowTapDensity (GDS layer 81/14) around the core area to check latchup
correctly. Currently, this is not yet implemented in Hammer, and will need to be added manually in a GDS editor
after GDS streamout.

30 Chapter 2. Hammer Technology Plugins

Hammer, Release 1.0.0

2.4.4 NDA Files

The NDA version of the Sky130 PDK is only required for Siemens Calibre to perform DRC/LVS signoff with the
commercial VLSI flow. It is NOT REQUIRED for the remaining commercial flow, as well as the open-source tool
flow. Therefore this NDA PDK is not used to generate a GDS.

If you have access to the NDA repo, you should add this path to your Hammer YAML configs:

technology.sky130.sky130_nda: "/path/to/skywater-src-nda"

We use the Calibre decks in the s8 PDK, version V2.0.1, see here for the DRC deck path and here for the LVS deck
path.

2.4.5 Resources

The good thing about this process being open-source is that most questions about the process are answerable through
a google search. The tradeoff is that the documentation is a bit of a mess, and is currently scattered over a few pages
and Github repos. We try to summarize these below.

SRAMs:

• Sram22 pre-compiled macros

– Various pre-compiled sizes of SRAM macros to support Hammer Sky130 flow

• Sram22

– Open-source SRAM generator

– Currently only supports the Sky130 process

– Very much under development, and some parts currently require commercial tools (for LEF and LIB gen-
eration)

• OpenRAM pre-compiled macros

– Precompiled sizes are 1kbytes, 2kbytes and 4kbytes

• OpenRAM

– Open-source static random access memory (SRAM) compiler

Git repos:

• SkyWater Open Source PDK

– Git repo of the main Skywater 130nm files

• Open-PDKs

– Git repo of Open-PDKs tool that compiles the Sky130 PDK

• Git repos on foss-eda-tools

– Additional useful repos, such as Berkeley Analog Generator (BAG) setup

Documentation:

• SkyWater SKY130 PDK’s documentation

– Main documentation site for the PDK

• Join the SkyWater PDK Slack Channel

– By far the best way to have questions about the process answered, with 80+ channels for different topics

2.4. Sky130 Technology Library 31

https://github.com/ucb-bar/hammer/blob/612b4b662a774b1cab5cf25e8f41c6a771388e47/hammer/technology/sky130/sky130.tech.json#L16
https://github.com/ucb-bar/hammer/blob/612b4b662a774b1cab5cf25e8f41c6a771388e47/hammer/technology/sky130/sky130.tech.json#L24
https://github.com/ucb-bar/hammer/blob/612b4b662a774b1cab5cf25e8f41c6a771388e47/hammer/technology/sky130/sky130.tech.json#L24
https://github.com/rahulk29/sram22_sky130_macros
https://github.com/rahulk29/sram22
https://github.com/efabless/sky130_sram_macros
https://github.com/VLSIDA/OpenRAM/
https://github.com/google/skywater-pdk/
https://github.com/RTimothyEdwards/open_pdks/
https://foss-eda-tools.googlesource.com/
https://skywater-pdk.readthedocs.io
https://join.skywater.tools/

Hammer, Release 1.0.0

• Skywater130 Standard Cell and Primitives Overview

– Additional useful documentation for the PDK

2.5 ASAP7 Technology Library

Hammer’s default demonstration PDK is ASAP7. There are some special setup and known issues with this open PDK.

2.5.1 Setup and Environment

In addition to requirements for hammer-vlsi, using ASAP7 also requires:

• ASAP7 PDK version 1p7, available here on GitHub. We recommend downloading an archive of or shallow
cloning the repository.

• The Calibre deck tarball (downloaded separately from the website) must not be extracted. It should be placed
in the directory specified by technology.asap7.tarball_dir. For ease, this can be same directory as the
repository.

• Either the gdstk or gdspy GDS manipulation utility is required for 4x database downscaling. gdstk (available
here on GitHub, version >0.6) is highly recommended; however, because it is more difficult to install, gdspy
(available here on Github, specifically version 1.4 can also be used instead, but it is much slower.

• Calibre must be the DRC/LVS tool. The rule decks only support 2017-year Calibre versions.

*At this moment, for BWRC affiliates, the environment needed for a gdstk or gdspy install is setup only on the LSF
cluster machines. To install it, first enable the Python dev environment:

scl enable rh-python36 bash

gdstk must be built from source, with dependencies such as CMake, LAPACK, and ZLIB. All must be installed from
source into your own environment. For the ZLIB build, make sure the -fPIC CFLAG is used. Then, in the gdstk
source, add the following CMake flags at the top of setup.py: -DZLIB_LIBRARY=/path/to/your/libz.a and
-DZLIB_INCLUDE_DIR=/path/to/your/include. Then, in the gdstk source folder:

python3 setup.py install --user

For gdspy, the installation is much easier, depending just on pip and numpy:

python -m pip install gdspy --user

Or, replace the pip installation with installation from source in the hammer/src/tools/gdspy submodule.

2.5.2 Dummy SRAMs

The ASAP7 plugin comes with a set of dummy SRAMs, which are NOT used by default (not included in the default
tech.json).

They are completely blank (full obstructions on layers M1-M3, will not pass DRC & LVS). All pins are on M4, with
the signal all on the left side and the power stripes running across. The M5 power stripes are able to connect up.

All SRAMs are scaled up by 4x, so they are subject to the scaling script.

sram-cache-gen.py generates sram-cache.json using srams.txt, which contains a list of available SRAMs in
Hammer IR. sram-cache.json memories is used by MacroCompiler to insert these memories into the design.

32 Chapter 2. Hammer Technology Plugins

http://diychip.org/sky130/
http://asap.asu.edu/asap/
https://github.com/The-OpenROAD-Project/asap7
https://github.com/heitzmann/gdstk
https://github.com/heitzmann/gdspy/releases

Hammer, Release 1.0.0

Finally, the SRAMCompiler in sram_compiler/__init__.py is used to generate the ExtraLibrarys (including .lib,
.lef, .gds) needed by the particular design.

2.5.3 Known Issues

1. ICG*DC* cells are set as don’t use due to improper LEF width.

2. Many additional cells are not LVS clean, and are set as don’t use.

3. Innovus tries to fix non-existent M3 and M5 enclosure violations, unfortunately lengthening violation fixing time.
Ignore these when reviewing the violations in Innovus.

4. If you specify core margins in the placement constraints, they left and bottom margins should be a multiple of
0.384 to avoid DRC violations. Layer offsets for M4-M7 are adjusted manually to keep all wires on-grid.

5. Common expected DRC violations (at reasonable, <70% local density):

• M(4,5,6,7).AUX.(1,2) only if the floorplan size requirement above is not satisfied

• V7.M8.AUX.2 and V2.M2.EN.1 due to incomplete via defs for V2 and V7 in power grid

• FIN.S.1 appears to be incorrect, standard cell fins are indeed on the right pitch

• LVT.W.1 caused by 0.5-width isolated-VT filler cells due to lack of implant layer spacing rules

• LISD.S.3, LIG.S.4 due to some combinations of adjacent cells

• V0.S.1 in ASYNC_DFFHx1

• Various M4, GATE violations in/around dummy SRAMs

2.6 Nangate45 Technology Library

This is a PDK that comes packaged with OpenROAD-flow. Right now, it is only validated against the OpenROAD-flow
backend of hammer.

2.6.1 Dummy SRAMs

The Nangate45 plugin comes with fake SRAMs without behavioral models or GDS files. They only have timing libs
for the TT corner (same as the pdk’s stcell lib).

2.6.2 Supported Tools

Only the OpenROAD-flow tools are suported, but compatibility between the two plugins is no longer maintained.

2.6. Nangate45 Technology Library 33

https://github.com/The-OpenROAD-Project/OpenROAD-flow

Hammer, Release 1.0.0

34 Chapter 2. Hammer Technology Plugins

CHAPTER

THREE

HAMMER TOOL PLUGINS

This guide discusses the use and creation of CAD tool plugins in Hammer. A CAD tool plugin provides the actual
implementation of Hammer APIs and outputs the TCL necessary to control its corresponding CAD tool.

Tool plugins must be structured as Python packages under the hammer.action package hierarchy. For example, if dc
is a synthesis tool, it must be contained under hammer/synthesis/dc. The package should contain an class object
named ‘tool’ to create an instance of the tool. tool should be a class object of an appropriate subclass of HammerTool
(e.g. HammerSynthesisTool).

3.1 Hammer CAD Tools

Hammer currently has open-source CAD tool plugins in the hammer/<action> folders and three repos
for CAD tools from commercial vendors: hammer-cadence-plugins, hammer-synopsys-plugins, and
hammer-mentor-plugins. hammer-mentor-plugins is a private repo since it contains tool-specific commands
not yet cleared for public release. Access to them may be granted for Hammer users who already have licenses for
those tools. See the note about plugins access for instructions for how to request access.

The structure of each repository is as follows:

• hammer

– ACTION

∗ TOOL_NAME

· __init__.py contains the methods needed to implement the tool

· defaults.yml contains the default Hammer IR and Meta Variables needed by the tool

ACTION is the Hammer action name (e.g. par, synthesis, drc, etc.). TOOL_NAME is the name of the tool,
which is referenced in your configuration. For example, if ACTION is par and TOOL_NAME is par_tool_foo, the
configuration would reference it as hammer.par.par_tool_foo.

3.2 Setting up a Hammer CAD Tool Plugin

This guide will discuss what a Hammer user may do if they want to implement their own CAD tool plugin or extend the
current CAD tool plugins. There are some basic mock-up examples of how this can be done in the par and synthesis
directories inside hammer/.

35

Hammer, Release 1.0.0

3.2.1 Tool Class

Writing a tool plugin starts with writing the tool class. Hammer already provides a set of classes and mixins for
a new tool to extend. For example, the Hammer Innovus plugin inherits from HammerPlaceAndRouteTool and
CadenceTool.

3.2.2 Steps

Each tool implements a steps method. For instance, a portion of the steps method for a place-and-route tool may look
like:

@property
def steps(self) -> List[HammerToolStep]:

steps = [
self.init_design,
self.floorplan_design,
self.route_design

]
return self.make_steps_from_methods(steps)

Each of the steps are their own methods in the class that will write TCL that will execute with the tool.

3.2.3 Getting Settings

Hammer provides the method get_setting("KEY_NAME") for the tool to actually grab the settings from the user’s
input YML or JSON files. One example would be self.get_setting("par.blockage_spacing") so that Hammer
can specify to the desired P&R tool what spacing to use around place and route blockages.

3.2.4 Writing TCL

Hammer provides two main methods for writing TCL to a file: append and verbose_append. Both do similar things
but verbose_append will emit additional TCL code to print the command to the terminal upon execution.

3.2.5 Executing the Tool

When all the desired TCL has been written by various step methods, it is time to execute the tool itself. Hammer
provides the method run_executable(args, cwd=self.run_dir) to do so. args is a Python list of flags to be
run with the tool executable. cwd=self.run_dir sets the “current working directory” and allows the plugin to specify
in what directory to execute the command.

3.2.6 Tool Outputs

After execution, the Hammer driver will emit a copy of the Hammer IR database in JSON format to the run directory
as well as specific new fields created by the activity. The name of the output JSON files will be related to the activity
type (e.g. par-output.json and par-output-full.json for the par activity). The -full verison contains the
entire Hammer IR database, while the other version contains only the output entries created by this activity. The
individual fields are created when the export_config_outputs method is called. Each implementation of this tool
must override this method with a new one that calls its super method and appends any additional output fields to the
output dictionary, as necessary.

36 Chapter 3. Hammer Tool Plugins

Hammer, Release 1.0.0

3.2.7 defaults.yml

Each tool may optionally implement a set of default Hammer IR and Meta Variables. These defaults may set different
values for global Hammer IR configuration, or add new tool-specific keys. Tool-specific keys must have a namespace
in the format <action>.<tool_name>.<key_name>. This file should have a companion defaults_types.yml that
defines the required types as well.

3.3 OpenROAD Place-and-Route Tool Plugin

3.3.1 Tool Setup

• OpenROAD - install using conda or from source

– we recommend installing from source because the conda package was compiled with the GUI disabled

• KLayout (DEF to GDSII conversion) - install using conda or from source.

3.3.2 Tool Steps

See __init__.py for the implementation of these steps.

INITIALIZE
init_design

FLOORPLAN
floorplan_design
place_bumps
macro_placement
place_tapcells
power_straps

PLACE
global_placement
io_placement
resize
detailed_placement

CTS
clock_tree
clock_tree_resize
add_fillers

ROUTING
global_route
global_route_resize
detailed_route

FINISHING
extraction
write_design

3.3. OpenROAD Place-and-Route Tool Plugin 37

https://anaconda.org/litex-hub/openroad
https://github.com/The-OpenROAD-Project/OpenROAD#build
https://anaconda.org/litex-hub/klayout
https://www.klayout.de/build.html

Hammer, Release 1.0.0

3.3.3 Step Details

A few of the steps are detailed below, mainly to document some details that aren’t present in the comments within
the plugin. The plugin (__init__.py and defaults.yml) is still the best reference for what each step does, the
explanations below are just more nuanced.

Macro Placement

At the beginning of the floorplan_design step, a file called macros.txt will be generated in build/par-rundir
that lists for each macro: their name/path in the design, master cell name, width/height, and origin (x,y). These may
help in setting the vlsi.inputs.placement_constraints key in your design configuration.

Currently, there are two ways to place macros.

If par.openroad.floorplan_mode == generate (default value), use the vlsi.inputs.
placement_constraints key to specify the path and (x,y) coordinate of each macro in the design. The
placement constraints for ALL macros must be specified, or OpenROAD will eventually throw an error about an
unplaced instance. Note that the (x,y) position is fixed to the bottom left corner of the macro, then the orientation
is applied. This means that for rotations besides r0, the (x,y) position WILL NOT correspond to the bottom left
corner of the final placed macro (e.g. the (x,y) position for a macro with orientation mx will correspond to the
top left corner of the final placed macro). To get around this, when par.openroad.floorplan_origin_pos ==
bottom_left (default value), the placement (x,y) coordinates are translated based on the rotation of the macro and
the width/height specified in the vlsi.inputs.placement_constraints, so that the (x,y) position specified in
vlsi.inputs.placement_constraints corresponds with the bottom left corner of the final placed macro. If
par.openroad.floorplan_origin_pos == rotated, then the (x,y) position of the macro is not translated.

If par.openroad.floorplan_mode == auto_macro, you must still use the vlsi.inputs.
placement_constraints key to specify the top-level width/height and margins constraints of the chip, but
all macros will be placed automatically using OpenROAD’s macro_placement command, leading to poor-quality
but sane results.

Write Design

OpenROAD uses an external tool called KLayout, which executes a custom Python script def2stream.py (see par.
openroad.def2stream_file for this file’s path) to write the final design to a GDS file. This is the same process used
in the default VLSI flow from OpenROAD.

3.3.4 Issue Archiving

This plugin supports generating a tar.gz archive of the current build/par-rundir directory with a runme.sh script
to reproduce the results. This feature is enabled with the par.openroad.create_archive_mode YAML key, which
can take the following values:

• none - never create an archive (default)

• after_error - if OpenROAD errors, create an archive of the run

• always - create an archive after every par run (regardless of whether OpenROAD errors)

• latest_run - create an archive of latest par run (don’t run OpenROAD)

– useful if OpenROAD gets stuck on endless optimization iterations but never actually “errors”

Creating an archive does the following:

• Generates a issue directory based on the date/time, top module, OS platform

38 Chapter 3. Hammer Tool Plugins

Hammer, Release 1.0.0

• Dumps the logger output

• Generates a runme.sh script

• Copies .tcl, .sdc, .pdn, and .lef files in par-rundir to the issue dir

• Copies all input Verilog to issue dir

• Copies all input LEFs to issue dir (some may not be used since they are hacked in read_lef())

• Copies all input LIBs to issue dir

• Hacks copied par.tcl script to remove all abspaths

• Hacks copied par.tcl script to comment out write_gds block w/ KLayout

• Tars up issue dir

3.4 Cadence Joules RTL Power Tool Plugin

3.4.1 Tool Steps

See __init__.py for the implementation of these steps.

init_design
synthesize_design
report_power

A variety of different output reports may be generated with this tool. Within the Hammer default configs file, the
power.inputs.report_configs struct description contains a summary of the different reporting options, specified
via the output_formats struct field.

3.4.2 Known Issues

• Joules supports saving the read stimulus file to the SDB (stimulus database) format via the write_sdb command.
However, subsequent reads of this SDB file via the read_sdb command fail for no apparent reason

– As a result, read_stimulus/compute_power cannot be a separate step in the plugin, because there is no
way to save the results of these commands before running the various power reporting commands. Thus
these two commands are run as part of the report_power step.

– NOTE: this might not be a problem anymore with the new Joules version, so we should re-try this!!

3.5 DRC/LVS with IC Validator

IC Validator is very command-line driven. Here are some usage notes:

• Many PDK decks will use variables to control switches. These are defined on command line with -D and can be
defined in Hammer config using the <drc/lvs>.icv.defines key (type: List[Dict[str, str]]).

• Any deck directories that need to be included are defined on command line with -I and can be defined in Hammer
config using the <drc/lvs>.icv.include_dirs key (type: List[str]).

• Extensibility is enabled by passing a file to the icv command with -clf. This file contains additional command
line arguments, and is generated in the generate_<drc/lvs>_args_file step (can be overridden).

3.4. Cadence Joules RTL Power Tool Plugin 39

https://github.com/ucb-bar/hammer/blob/joules-fixes/hammer/config/defaults.yml

Hammer, Release 1.0.0

• Decks are included using the generate_<drc/lvs>_run_file step (can be overridden with additional ICV
method calls).

• Results/violations are generated in a format readable by VUE (interactive violation browser) using the -vue
option.

• Layout is viewed using IC Validator Workbench (ICVBV). It can communicate with VUE to generate violation
markers by opening up a socket to ICV. The socket number can range between 1000 and 65535 (selectable by
<drc/lvs>.icv.icvwb_port. Running the generated_scripts/view_<drc/lvs> script will handle this
automatically, by starting ICVWB, opening the port, waiting for it to be listening, and then starting VUE.

• ICVWB layer mapping can be specified in synopsys.layerprops key.

Tested with:

• hammer-intech22-plugin

3.6 DRC/LVS with Pegasus

3.6.1 Pegasus usage notes

Although batch Pegasus is primarily command-line option driven, the only way to override certain directives in the
rule decks is to generate a control file called pegasusdrcctl for DRC or pegasuslvsctl for LVS.

• This file can also be used to fill in fields in the GUI version for debugging, and changes in the the GUI will then
overwrite this file.

• This file is generated by the generate_drc_ctl_file/generate_lvs_ctl_file step. Changes to what
appears in this file must be done with either the key drc.inputs.additional_drc_text/lvs.inputs.
additional_lvs_text with each line terminated by a semicolon (appends to the end of the generated file),
or with a replacement hook.

3.6.2 Pegasus Design Review usage notes

Pegasus Design Review (DR) and Results Viewer (RV) together are the GUI DRC/LVS results browser.

The first time you open DR with the view_drc/view_lvs script, you will get an error message:

A Valid Technology File Path is Required? “”: Not Found?

This is because you need to load the DRC/LVS deck as a technology.

To import the technology, in the main Design Review windows, go to:

Tools -> Technology Manager (window pops up) -> File -> Import -> PVL (tab)

In this dialog window, enter the technology basename in the Hammer input key vlsi.core.technology (e.g.
“sky130”, not “hammer.technology.sky130”) in the “Technology Name” field and browse to the DRC/LVS deck in the
PVL Rule File dialog. Then hit Import, close the Technology Manager, close DR, and run the view_drc/view_lvs
script again.

Subsequent openings of databases anywhere will map to this technology and label layers properly because the technol-
ogy information is stored your home directory.

Tested with:

• sky130

40 Chapter 3. Hammer Tool Plugins

CHAPTER

FOUR

HAMMER FLOW STEPS

This documentation will walk through the currently supported steps of the Hammer flow: synthesis, place-and-route,
DRC, LVS, and simulation. Two other action types are supported, but not discussed: PCB collateral generation, and
SRAM generation.

4.1 Hammer Actions

Hammer has a set of actions including synthesis, place-and-route, DRC, LVS, simulation, SRAM generation, and PCB
collateral generation. All of the Hammer actions and their associated key inputs can be found in hammer/config/
defaults.yml and are documented in detail in each action’s documentation.

Hammer will automatically pass the output files of one action to subsequent actions if those actions require the files.
Hammer does this with conversion steps (e.g. syn-to-par for synthesis outputs to place-and-route inputs), which
map the outputs from one tool into the inputs of another (e.g. synthesis.outputs.output_files maps to par.
outputs.input_files). The Hammer make infrastructure builds these conversion rules automatically, so using the
Make infrastructure is recommended. See the Hammer Buildfile section for more details.

Hammer actions are implemented using tools. See the Hammer CAD Tools section for details about how these tools
are set up.

4.2 Synthesis

Hammer supports synthesizing Verilog-based RTL designs to gate-level netlists. This action requires a tool plugin to
implement HammerSynthesisTool.

4.2.1 Synthesis Setup Keys

• Namespace: vlsi.core

– synthesis_tool

∗ Module of the synthesis tool, e.g. hammer.synthesis.genus

41

Hammer, Release 1.0.0

4.2.2 Synthesis Input Keys

• Namespace: synthesis

– inputs.input_files ([])

∗ A list of file paths to source files to be passed to the synthesis tool. The paths may be relative to the
directory in which hammer-vlsi is called.

– inputs.top_module (str)

∗ Name of the top level verilog module of the design.

– clock_gating_mode (str)

∗ auto: turn on automatic clock gating inference in CAD tools

∗ empty: do not do any clock gating

4.2.3 Synthesis Inputs

There are no prerequisites to running synthesis other than setting the keys that are described above.

4.2.4 Synthesis Outputs

• Mapped verilog file: obj_dir/syn-rundir/{TOP_MODULE}.mapped.v

• Mapped design SDF: obj_dir/syn-rundir/{TOP_MODULE}.mapped.sdf

• Synthesis output Hammer IR is contained in obj_dir/syn-rundir/syn-output.json

• Synthesis reports for gates, area, and timing are output in obj_dir/syn-rundir/reports

The synthesis output Hammer IR is converted to inputs for the P&R tool and the simulation tool by the Hammer
syn-to-par and syn-to-sim commands, respectively.

4.2.5 Synthesis Commands

• Synthesis Command

– hammer-vlsi -e env.yml -p config.yml --obj_dir OBJ_DIR syn

• Synthesis to Place-and-route

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.json
--obj_dir OBJ_DIR syn-to-par

• Synthesis to Simulation

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.json
--obj_dir OBJ_DIR syn-to-sim

42 Chapter 4. Hammer Flow Steps

Hammer, Release 1.0.0

4.3 Place-and-Route

Hammer has an action for placing and routing a synthesized design. This action requires a tool plugin to implement
HammerPlaceAndRouteTool.

4.3.1 P&R Setup Keys

• Namespace: vlsi.core

– par_tool

∗ Module of the P&R tool, e.g. hammer.par.innovus

4.3.2 P&R Input Keys

• Namespace: vlsi

– These are built-in Hammer APIs covered in Hammer APIs

• Namespace: par

– inputs.input_files ([])

∗ List of paths to post-synthesis netlists. Auto-populated after syn-to-par.

– inputs.top_module (str)

∗ Name of top RTL module to P&R. Auto-populated after syn-to-par.

– inputs.post_synth_sdc (str)

∗ Post-synthesis generated SDC. Auto-populated after syn-to-par.

– inputs.gds_map_mode (str)

∗ Specify which GDS layermap file to use. auto uses the technology-supplied file, whereas manual
requires a file to specified via inputs.gds_map_file.

– inputs.gds_merge (bool)

∗ True tells the P&R tool to merge all library & macro GDS before streamout. Otherwise, only refer-
ences will exist and merging needs to be done later, by a tool such as Calibre, gdstk, or gdspy.

– inputs.physical_only_cells_mode (str)

∗ Specifies which set of cells to exclude from SPICE netlist because they have no logical function.
auto uses the technology-supplied list, whereas manual and append overrides and appends to the
supplied list, respectively.

– submit (dict)

∗ Can override global settings for submitting jobs to a workload management platform.

– power_straps_mode (str)

∗ Power straps configuration. generate enables Hammer’s power straps API, whereas manual re-
quires a TCL script in power_straps_script_contents.

– blockage_spacing (Decimal)

∗ Global obstruction around every hierarchical sub-block and hard macro

– generate_power_straps_options (dict)

4.3. Place-and-Route 43

Hammer, Release 1.0.0

∗ If generate_power_straps_method is by_tracks, this struct specifies all the options for the
power straps API. See Hammer APIs for more detail.

4.3.3 P&R Inputs

There are no other prerequisites to running place & route other than setting the keys described above.

4.3.4 P&R Outputs

• Hierarchical (e.g. Cadence ILMs) and between-step snapshot databases in OBJ_DIR/par-rundir

• GDSII file with final design: {OBJ_DIR}/par-rundir/{TOP_MODULE}.gds

• Verilog gate-level netlist: {OBJ_DIR}/par-rundir/{TOP_MODULE}.lvs.v

• SDF file for post-par simulation: {OBJ_DIR}/par-rundir/{TOP_MODULE}.sdf

• Timing reports: {OBJ_DIR}/par-rundir/timingReports

• A script to open the final chip: {OBJ_DIR}/par-rundir/generated_scripts/open_chip

P&R output Hammer IR {OBJ_DIR}/par-rundir/par-output.json is converted to inputs for the DRC, LVS, and
simulation tools by the par-to-drc, par-to-lvs, and par-to-sim actions, respectively.

4.3.5 P&R Commands

• P&R Command (after syn-to-par is run)

– hammer-vlsi -e env.yml -p {OBJ_DIR}/par-input.json --obj_dir OBJ_DIR par

• P&R to DRC

– hammer-vlsi -e env.yml -p config.yml -p {OBJ_DIR}/par-rundir/par-output.json
--obj_dir OBJ_DIR par-to-drc

• P&R to LVS

– hammer-vlsi -e env.yml -p config.yml -p {OBJ_DIR}/par-rundir/par-output.json
--obj_dir OBJ_DIR par-to-lvs

• P&R to Simulation

– hammer-vlsi -e env.yml -p config.yml -p {OBJ_DIR}/par-rundir/par-output.json
--obj_dir OBJ_DIR par-to-sim

4.4 DRC

Hammer has an action for running design rules check (DRC) on a post-place-and-route GDS. This action requires a
tool plugin to implement HammerDRCTool.

44 Chapter 4. Hammer Flow Steps

Hammer, Release 1.0.0

4.4.1 DRC Setup Keys

• Namespace: vlsi.core

– drc_tool

∗ Module of the DRC tool e.g. hammer.drc.calibre

4.4.2 DRC Input Keys

• Namespace: drc

– inputs.top_module (str)

∗ Name of top RTL module to run DRC on. Auto-populated after par-to-drc.

– inputs.layout_file (str)

∗ GDSII file from place-and-route. Auto-populated after par-to-drc.

– inputs.additional_drc_text_mode (str)

∗ Chooses what custom DRC commands to add to the run file. auto selects the one provided in the
Hammer Tech JSON .

– inputs.drc_rules_to_run ([str])

∗ This selects a subset of the rules given in the technology’s Design Rule Manual (DRM). The format
of these rules will be technology- and tool-specific.

– submit (dict)

∗ Can override global settings for submitting jobs to a workload management platform.

4.4.3 DRC Inputs

There are no other prerequisites to running DRC other than setting the keys described above.

4.4.4 DRC Outputs

• DRC results report and database in {OBJ_DIR}/drc-rundir

• A run file: {OBJ_DIR}/drc-rundir/drc_run_file

• A script to interactively view the DRC results: {OBJ_DIR}/drc-rundir/generated_scripts/view_drc

4.4.5 DRC Commands

• DRC Command (after par-to-drc is run)

– hammer-vlsi -e env.yml -p {OBJ_DIR}/drc-input.json --obj_dir OBJ_DIR drc

4.4. DRC 45

Hammer, Release 1.0.0

4.5 LVS

Hammer has an action for running layout-versus-schematic (LVS) on a post-place-and-route GDS and gate-levl netlist.
This action requires a tool plugin to implement HammerLVSTool.

4.5.1 LVS Setup Keys

• Namespace: vlsi.core

– lvs_tool

∗ Module of the lvs tool, e.g. hammer.lvs.calibre

4.5.2 LVS Input Keys

• Namespace: lvs

– inputs.top_module (str)

∗ Name of top RTL module to run LVS on. Auto-populated after par-to-lvs.

– inputs.layout_file (str)

∗ GDSII file from P&R. Auto-populated after par-to-lvs.

– inputs.schematic_files ([str])

∗ Netlists from P&R’d design and libraries. Auto-populated after par-to-lvs.

– inputs.additional_lvs_text_mode (str)

∗ Chooses what custom LVS commands to add to the run file. auto selects the one provided in the
Hammer Tech JSON .

– submit (dict)

∗ Can override global settings for submitting jobs to a workload management platform.

4.5.3 LVS Inputs

There are no other prerequisites to running LVS other than setting the keys described above.

4.5.4 LVS Outputs

• LVS results report and database in {OBJ_DIR}/lvs-rundir

• A run file: {OBJ_DIR}/lvs-rundir/lvs_run_file

• A script to interactively view the LVS results: {OBJ_DIR}/lvs-rundir/generated_scripts/view_lvs

46 Chapter 4. Hammer Flow Steps

Hammer, Release 1.0.0

4.5.5 LVS Commands

• LVS Command (after par-to-lvs is run)

– hammer-vlsi -e env.yml -p {OBJ_DIR}/lvs-input.json --obj_dir OBJ_DIR lvs

4.6 Simulation

Hammer supports RTL, post-synthesis, and post-P&R simulation. It provides a simple API to add flags to the simulator
call and automatically passes in collateral to the simulation tool from the synthesis and place-and-route outputs. This
action requires a tool plugin to implement HammerSimTool.

4.6.1 Simulation Setup Keys

• Namespace: vlsi.core

– sim_tool

∗ Module of the simulation tool, e.g. hammer.sim.vcs

4.6.2 Simulation Input Keys

• Namespace: sim.inputs

– input_files ([])

∗ A list of file paths to source files (verilog sources, testharness/testbench, etc.) to be passed to the
synthesis tool (both verilog and any other source files needed). The paths may be relative to the
directory in which hammer-vlsi is called.

– top_module (str)

∗ Name of the top level module of the design.

– options ([str])

∗ Any options that are passed into this key will appear as plain text flags in the simulator call.

– defines ([str])

∗ Specifies define options that are passed to the simulator. e.g. when using VCS, this will be added as
+define+{DEFINE}.

– compiler_cc_opts ([str])

∗ Specifies C compiler options when generating the simulation executable. e.g. when using VCS, each
compiler_cc_opt will be added as -CFLAGS {compiler_cc_opt}.

– compiler_ld_opts ([str])

∗ Specifies C linker options when generating the simulation executable. e.g. when using VCS, each
compiler_ld_opt will be added as -LDFLAGS {compiler_ld_opt}.

– timescale (str)

∗ Plain string that specifies the simulation timescale. e.g. when using VCS, sim.inputs.
timescale: '1ns/10ps' would be passed as -timescale=1ns/10ps

– benchmarks ([str])

4.6. Simulation 47

Hammer, Release 1.0.0

∗ A list of benchmark binaries that will be run with the simulator to test the design if the testbench
requires it. For example, this may be RISC-V binaries. If unspecified or left empty, the simulation
will execute as normal.

– parallel_runs (int)

∗ Maximum number of simulations to run in parallel. -1 denotes all in parallel. 0 or 1 denotes serial
execution.

– tb_name (str)

∗ The name of the testbench/test driver in the simulation.

– tb_dut (str)

∗ Hierarchical path to the to top level instance of the “dut” from the testbench.

– level ("rtl" or "gl")

∗ This defines whether the simulation being run is at the RTL level or at the gate level.

– all_regs (str)

∗ Path to a list of all registers in the design, typically generated from the synthesis or P&R tool. This
is used in gate level simulation to initialize register values.

– seq_cells (str)

∗ Path to a list of all sequential standard cells in the design, typically generated from the synthesis or
P&R tool. This is used in gate level simulation.

– sdf_file (str)

∗ Path to Standard Delay Format file used in timing annotated simulations.

– gl_register_force_value (0 or 1)

∗ Defines what value all registers will be initialized to for gate level simulations.

– timing_annotated (false or true)

∗ Setting to false means that the simulation will be entirely functional. Setting to true means that the
simulation will be time annotated based on synthesis or P&R results.

– saif.mode ("time", "trigger", "trigger_raw", or "full")

∗ "time": pair with saif.mode.start_time and saif.mode.end_time (TimeValue) to dump be-
tween 2 timestamps

∗ "trigger": inserts a trigger into the simulator run script

∗ "trigger_raw": inserts a given start/end trigger tcl script into the simulator run script. Specify
scripts with saif.mode.start_trigger_raw and saif.mode.end_trigger_raw (str)

∗ "full": dump the full simulation

– execution_flags ([str])

∗ Each string in this list will be passed as an option when actually executing the simulation executable
generated from the previous arguments.

∗ Can also use execution_flags_prepend and execution_flags_append for additional execu-
tion flags

– execute_sim (true or false)

∗ Determines whether or not the simulation executable that is generated with the above inputs with the
given flags or if the executable will just be generated.

48 Chapter 4. Hammer Flow Steps

Hammer, Release 1.0.0

4.6.3 Simulation Inputs

There are no prerequisites to running an RTL simulation other than setting the keys that are described above. Run-
ning the syn-to-sim action after running synthesis will automatically generate the Hammer IR required to pipe the
synthesis outputs to the Hammer simulation tool, and should be included in the Hammer call, as demonstrated in the
“Post-Synthesis Gate Level Sim” command below. The same goes for post-place-and-route simulations. The required
files for these simulations (SDF, SPEF, etc.) are generated and piped to the simulation tool in the corresponding action’s
outputs.

The Hammer simulation tool will initialize register values in the simulation, as that is of particular need when simulating
Chisel-based designs, to deal with issues around x-pessimism.

4.6.4 Simulation Outputs

The simulation tool is able to output waveforms for the simulation. All of the relevant outputs of the simulation can be
found in OBJ_DIR/sim-rundir/.

4.6.5 Simulation Commands

• RTL Simulation Command

– hammer-vlsi -e env.yml -p config.yml --obj_dir OBJ_DIR sim

• Synthesis to Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.json -o
OBJ_DIR/syn-to-sim_input.json --obj_dir OBJ_DIR syn-to-sim

• Post-Synthesis Gate Level Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-sim_input.json --obj_dir
OBJ_DIR sim

• P&R to Simulation

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/par-output.json -o
OBJ_DIR/par-to-sim_input.json --obj_dir OBJ_DIR par-to-sim

• Post-P&R Gate Level Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-sim_input.json --obj_dir
OBJ_DIR sim

4.7 Power

Hammer supports RTL, post-synthesis, and post-P&R power analysis. It provides a simple API to add flags to the
power tool call and automatically passes in collateral to the power tool from the other tool steps. This action requires
a tool plugin to implement HammerPowerTool.

4.7. Power 49

Hammer, Release 1.0.0

4.7.1 Power Setup Keys

• Namespace: vlsi.core

– power_tool

∗ Module of the power tool, e.g. hammer.power.voltus

4.7.2 Simulation Input Keys

• Namespace: power.inputs

– database (str)

∗ Path to the place and route database of the design to be analyzed. This path may be relative to the
directory in which hammer-vlsi is called.

– tb_name (str)

∗ The name of the testbench/test driver in the simulation.

– tb_dut (str)

∗ Hierarchical path to the to top level instance of the “dut” from the testbench.

– spefs ([str])

∗ List of paths to all spef (parasitic extraction) files for the design. This list may include a spef file per
MMMC corner. Paths may be relative to the directory in which hammer-vlsi is called.

– waveforms ([str])

∗ List of paths to waveforms to be used for dynamic power analysis. Paths may be relative to the
directory in which hammer-vlsi is called.

– start_times ([TimeValue])

∗ List of analysis start times corresponding to each of the waveforms used for dynamic power analysis.

– end_times ([TimeValue])

∗ List of analysis end times corresponding to each of the waveforms used for dynamic power analysis.

– saifs ([str])

∗ List of paths to SAIF (activity files) for dynamic power analysis. Generally generated by a gate-level
simulation. Paths may be relative to the directory in which hammer-vlsi is called.

– extra_corners_only (bool)

∗ If overridden to true, the power tool will report for only the extra MMMC corners, saving runtime.
The typical use case is to only report power and rail analysis for a typical/nominal corner.

– input_files ([str])

∗ A list of the paths to the design inputs files (HDL or netlist) for power analysis.

– sdc (str)

∗ Path to SDC input file.

– report_configs ([dict])

∗ List of report configs that specify PowerReport structs.

– level (FlowLevel)

50 Chapter 4. Hammer Flow Steps

Hammer, Release 1.0.0

∗ Power analysis mode for different levels of the VLSI flow. The available options are rtl, syn,
and par.

– top_module (str)

∗ Top RTL module for power analysis.

4.7.3 Power Inputs

Hammer’s power analysis can be run with an RTL input, or post-synthesis or post-place-and-route (and with corre-
sponding simulations). Auto-translation of of Hammer IR to the power tool from those outputs are accomplished using
the sim-rtl-to-power, syn-to-power, sim-syn-to-power, par-to-power, and sim-par-to-power actions,
as demonstrated below. The required files for power analysis (database, SAIF, SPEF, etc.) are generated and piped to
the power tool from the pre-requisite action’s outputs.

4.7.4 Power Outputs

The power tool outputs static and active power estimations into the OBJ_DIR/power-rundir/ directory. Exact report
format may vary by tool used.

4.7.5 Power Commands

RTL Power Analysis:

• RTL Sim

– hammer-vlsi -e env.yml -p config.yml --obj_dir OBJ_DIR sim-rtl

• Simulation to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/sim-rundir/sim-rtl-output.json
-o OBJ_DIR/sim-rtl-to-power_input.json --obj_dir OBJ_DIR sim-rtl-to-power

• Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/sim-rtl-to-power_input.json
--obj_dir OBJ_DIR power-rtl

Post-synthesis Power Analysis:

• Syn to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.json -o
OBJ_DIR/syn-to-power_input.json --obj_dir OBJ_DIR syn-to-power

• Syn to Simulation

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.json -o
OBJ_DIR/syn-to-sim_input.json --obj_dir OBJ_DIR syn-to-sim

• Post-Syn Gate Level Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-sim_input.json --obj_dir
OBJ_DIR sim-syn

• Simulation to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/sim-rundir/sim-syn-output.json
-o OBJ_DIR/sim-syn-to-power_input.json --obj_dir OBJ_DIR sim-syn-to-power

4.7. Power 51

Hammer, Release 1.0.0

• Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-power_input.json -p
OBJ_DIR/sim-syn-to-power_input.json --obj_dir OBJ_DIR power-syn

Post-P&R Power Analysis:

• P&R to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/par-output.json -o
OBJ_DIR/par-to-power_input.json --obj_dir OBJ_DIR par-to-power

• P&R to Simulation

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/par-output.json -o
OBJ_DIR/par-to-sim_input.json --obj_dir OBJ_DIR par-to-sim

• Post-P&R Gate Level Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-sim_input.json --obj_dir
OBJ_DIR sim-par

• Simulation to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/sim-rundir/sim-par-output.json
-o OBJ_DIR/sim-par-to-power_input.json --obj_dir OBJ_DIR sim-par-to-power

• Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-power_input.json -p
OBJ_DIR/sim-par-to-power_input.json --obj_dir OBJ_DIR power-par

4.8 Formal Verification

Hammer supports post-synthesis and post-P&R formal verification. It provides a simple API to provide a set of refer-
ence and implementation inputs (e.g. Verilog netlists) to perform formal verification checks such as logical equivalence
checking (LEC). This action requires a tool plugin to implement HammerFormalTool.

4.8.1 Formal Verification Setup Keys

• Namespace: vlsi.core

– formal_tool

∗ Python module of the formal verification tool e.g. hammer.formal.conformal

4.8.2 Formal Verification Input Keys

• Namespace: formal.inputs

– check (str)

∗ Name of the formal verification check that is to be performed. Support varies based on the specific
tool plugin. Potential check types/algorithms could be “lec”, “power”, “constraint”, “cdc”, “prop-
erty”, “eco”, and more. At the moment, only “lec” is supported.

– input_files ([])

52 Chapter 4. Hammer Flow Steps

Hammer, Release 1.0.0

∗ A list of file paths to implementation source files (verilog, vhdl, spice, liberty, etc.) to be passed to
the formal verification tool. For a LEC tool, this would be the sources for the “revised” design. The
paths may be relative to the directory in which hammer-vlsi is called.

– reference_files ([])

∗ A list of file paths to reference source files (verilog, vhdl, spice, liberty, etc.) to be passed to the
formal verification tool. For a LEC tool, this would be the sources for the “golden” design. The
paths may be relative to the directory in which hammer-vlsi is called.

– top_module (str)

∗ Name of the top level module of the design to be verified.

4.8.3 Formal Verification Inputs

Running the syn-to-formal action after running synthesis will automatically generate the Hammer IR required to
pipe the synthesis outputs to the Hammer formal verification tool, and should be included in the Hammer call, as
demonstrated in the “Post-Synthesis Formal Verification” command below. The same goes for post-place-and-route
formal verification.

At this time, only netlists are passed to the formal verification tool. Additional files (SDCs, CPFs, etc.) are needed
for more advanced formal verification checks but are not yet currently supported. Similarly, formal verification on the
behavioral RTL is also not yet supported.

4.8.4 Formal Verification Outputs

The formal verification tool produces reports in OBJ_DIR/formal-rundir/. Outputs from formal verification flows
such as engineering change order (ECO) patches are not yet supported.

4.8.5 Formal Verification Commands

• Synthesis to Formal Verification

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.json -o
OBJ_DIR/syn-to-formal_input.json --obj_dir OBJ_DIR syn-to-formal

• Post-Synthesis Formal Verification

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-formal_input.json
--obj_dir OBJ_DIR formal

• P&R to Formal Verification

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/par-output.json -o
OBJ_DIR/par-to-formal_input.json --obj_dir OBJ_DIR par-to-formal

• Post-P&R Formal Verification

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-formal_input.json
--obj_dir OBJ_DIR formal

4.8. Formal Verification 53

Hammer, Release 1.0.0

4.9 Static Timing Analysis

Hammer supports post-synthesis and post-P&R static timing analysis. It provides a simple API to provide a set of design
inputs (e.g. Verilog netlists, delay files, parasitics files) to perform static timing analysis (STA) for design signoff. This
action requires a tool plugin to implement HammerTimingTool.

4.9.1 STA Setup Keys

• Namespace: vlsi.core

– timing_tool

∗ Module of the STA tool, e.g. hammer.timing.tempus

4.9.2 STA Input Keys

• Namespace: timing.inputs

– input_files ([])

∗ A list of file paths to the Verilog gate-level netlist to be passed to the STA tool. The paths may be
relative to the directory in which hammer-vlsi is called.

– top_module (str)

∗ Name of the top level module of the design to be timed.

– post_synth_sdc (str)

∗ Post-synthesis generated SDC. Auto-populated after syn-to-timing.

– spefs ([str])

∗ List of paths to all spef (parasitic extraction) files for the design. This list may include a spef file per
MMMC corner. Paths may be relative to the directory in which hammer-vlsi is called.

– sdf_file (str)

∗ Path to Standard Delay Format file. Auto-populated after syn-to-timing and par-to-timing.

– max_paths (int)

∗ Maximum number of timing paths to report from the STA tool. Large limits may hurt tool runtime.

4.9.3 STA Inputs

Running the syn-to-timing action after running synthesis will automatically generate the Hammer IR required to
pipe the synthesis outputs to the Hammer STA tool, and should be included in the Hammer call, as demonstrated in the
“Post-Synthesis STA” command below. The same goes for post-place-and-route STA.

54 Chapter 4. Hammer Flow Steps

Hammer, Release 1.0.0

4.9.4 STA Outputs

The STA tool produces reports in OBJ_DIR/timing-rundir/. Outputs from advanced STA flows such as engineering
change order (ECO) patches are not yet supported.

4.9.5 STA Commands

• Synthesis to STA

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.json -o
OBJ_DIR/syn-to-timing_input.json --obj_dir OBJ_DIR syn-to-timing

• Post-Synthesis STA

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-timing_input.json
--obj_dir OBJ_DIR timing

• P&R to STA

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/par-output.json -o
OBJ_DIR/par-to-timing_input.json --obj_dir OBJ_DIR par-to-timing

• Post-P&R STA

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-timing_input.json
--obj_dir OBJ_DIR timing

4.9. Static Timing Analysis 55

Hammer, Release 1.0.0

56 Chapter 4. Hammer Flow Steps

CHAPTER

FIVE

HAMMER USE

This documentation will walk through more advanced features of the Hammer infrastructure. You will learn about
Hammer’s APIs, flow control, how to write hooks, the supported build infrastructure, and how to set up hierarchical
flows.

5.1 Hammer IR and Meta Variables

5.1.1 Hammer IR

Hammer IR is the primary standardized data exchange format of Hammer. Hammer IR standardizes physical design
constraints such as placement constraints and clock constraints. In addition, the Hammer IR also standardizes commu-
nication among and to Hammer plugins, including tool control (e.g. loading tools, etc) and configuration options (e.g.
number of CPUs).

5.1.2 The hammer-config library

The hammer-config library is the part of Hammer responsible for parsing Hammer YAML/JSON configuration files
into Hammer IR. Hammer IR is used for the standardization and interchange of data between the different parts of
Hammer and Hammer plugins.

Note: There is a built-in order of precedence, from lowest to highest:

1) Hammer’s defaults.yml

2) Tool plugin’s defaults.yml

3) Tech plugin’s defaults.yml

4) User’s Hammer IR (using -p on the command line)

JSON/YAML files specified with -p later on the command line have higher precedence and keys appearing
later if duplicated in a given file also take precedence. In the examples below, “Level #” will be used to
denote the level of precedence of the configuration snippet.

The get_setting() method is available to all Hammer technology/tool plugins and hooks (see Extending Hammer
with Hooks).

57

https://github.com/ucb-bar/hammer/tree/master/hammer/config

Hammer, Release 1.0.0

5.1.3 Basics

foo:
bar:

adc: "yes"
dac: "no"

The basic idea of Hammer IR in YAML/JSON format is centered around a hierarchically nested tree of YAML/JSON
dictionaries. For example, the above YAML snippet is translated to two variables which can be queried in code -
foo.bar.adc would have yes and foo.bar.dac would have no.

5.1.4 Overriding

Hammer IR snippets frequently “override” each other. For example, a technology plugin might provide some defaults
which a specific project can override with a project YAML snippet.

For example, if the base snippet contains foo: 12345 and a snippet in a file of higher precedence contains foo:
54321, then get_setting("foo") would return 54321.

5.1.5 Meta actions

Sometimes it is desirable that variables are not completely overwritten, but instead modified.

For example, say that the technology plugin provides:

vlsi.tech.foobar65.bad_cells: ["NAND4X", "NOR4X"]

And let’s say that in our particular project, we find it undesirable to use the NAND2X and NOR2X cells. However, if we
simply put the following in our project YAML, the references to NAND4X and NOR4X disappear and we don’t want to
have to copy the information from the base plugin, which may change, or which may be proprietary, etc.

vlsi.tech.foobar65.bad_cells: ["NAND2X", "NOR2X"]

The solution is meta variables. This lets Hammer’s config parser know that instead of simply replacing the base
variable, it should do a particular special action. Any config variable can have _meta suffixed into a new variable with
the desired meta action.

In this example, we can use the append meta action:

vlsi.tech.foobar65.bad_cells: ["NAND2X", "NOR2X"]
vlsi.tech.foobar65.bad_cells_meta: append

This will yield the desired result of ["NAND4X", "NOR4X", "NAND2X", "NOR2X"] when get_setting("vlsi.
tech.foobar65.bad_cells") is called in the end.

58 Chapter 5. Hammer Use

Hammer, Release 1.0.0

5.1.6 Applying multiple meta actions

Multiple meta actions can be applied sequentially if the _meta variable is an array. Example:

In Level 1:

foo.flash: yes

In Level 2 (located at /opt/foo):

foo.pipeline: "CELL_${foo.flash}.lef"
foo.pipeline_meta: ['subst', 'prependlocal']

Result: get_setting("foo.pipeline") returns /opt/foo/CELL_yes.lef.

5.1.7 Common meta actions

• append: append the elements provided to the base list. (See the above vlsi.tech.foobar65.bad_cells
example.)

• prepend: prepend the elements provided to the base list. Useful where list order matters, but make sure the file
containing this directive is at the end of the list of files passed to hammer-vlsi with -p.

• subst: substitute variables into a string.

Base:

foo.flash: yes

Meta:

foo.pipeline: "${foo.flash}man"
foo.pipeline_meta: subst

Result: get_setting("foo.flash") returns yesman

• lazysubst: by default, variables are only substituted from previous configs. Using lazysubst allows us to
defer the substitution until the very end.

Example without lazysubst:

Level 1:

foo.flash: yes

Level 2:

foo.pipeline: "${foo.flash}man"
foo.pipeline_meta: subst

Level 3:

foo.flash: no

Result: get_setting("foo.flash") returns yesman

Example with lazysubst:

Level 1:

5.1. Hammer IR and Meta Variables 59

Hammer, Release 1.0.0

foo.flash: yes

Level 2:

foo.pipeline: "${foo.flash}man"
foo.pipeline_meta: lazysubst

Level 3:

foo.flash: no

Result: get_setting("foo.flash") returns noman

In general, putting lazy in front of all other directives will defer the meta processing until the very end.

• crossref - directly reference another setting. Example:

Level 1:

foo.flash: yes

Level 2:

foo.mob: "foo.flash"
foo.mob_meta: crossref

Result: get_setting("foo.mob") returns yes

You can also append/prepend instead of substitute using crossappendref and crossprependref.

• transclude - transclude the given path. Example:

Level 1:

foo.bar: "/opt/foo/myfile.txt"
foo.bar_meta: transclude

Result: get_setting("foo.bar") returns <contents of /opt/foo/myfile.txt>

• prependlocal - prepend the local path or package resource directory of this config file. Example:

Level 1 (located at /opt/foo):

foo.bar: "myfile.txt"
foo.bar_meta: prependlocal

Result: get_setting("foo.mob") returns /opt/foo/myfile.txt

• deepsubst - like subst but descends into sub-elements. Example:

Level 1:

foo.bar: "123"

Level 2:

foo.bar:
baz: "${foo.bar}45"
quux: "32${foo.bar}"

foo.bar_meta: deepsubst

60 Chapter 5. Hammer Use

Hammer, Release 1.0.0

Result: get_setting("foo.bar.baz") returns 12345 and get_setting("foo.bar.baz") returns 32123

5.1.8 Type Checking

Any existing configuration file can and should be accompanied with a corresponding configuration types file. This
allows for static type checking of any key when calling get_setting. The file should contain the same keys as the
corresponding configuration file, but can contain the following as values:

• primitive types (int, str, etc.)

• collection types (list)

• collections of key-value pairs (list[dict[str, str]], list[dict[str, list]], etc.) These values are
turned into custom constraints (e.g. PlacementConstraint, PinAssignment) later in the Hammer workflow,
but the key value pairs are not type-checked any deeper.

• optional forms of the above (Optional[str])

• the wildcard Any type

Hammer will perform the same without a types file, but it is highly recommended to ensure type safety of any future
plugins.

5.1.9 Key History

With the ruamel.yaml package, Hammer can emit what files have modified any configuration keys in YAML for-
mat. Turning on key history is accomplished with the --dump-history command-line flag. The file is named
{action}-output-history.yml and is located in the output folder of the given action.

Example with the file test-config.yml:

synthesis.inputs:
input_files: ["foo", "bar"]
top_module: "z1top.xdc"

vlsi:
core:

technology: "hammer.technology.nop"

synthesis_tool: "hammer.synthesis.nop"

test/syn-rundir/syn-output-history.yml after executing the command hammer-vlsi --dump-history -p
test-config.yml --obj_dir test syn:

synthesis.inputs.input_files: # Modified by: test-config.yml
- LICENSE
- README.md

synthesis.inputs.top_module: z1top.xdc # Modified by: test-config.yml

vlsi.core.technology: nop # Modified by: test-config.yml
vlsi.core.synthesis_tool: hammer.synthesis.nop # Modified by: test-config.yml

Example with the files test-config.yml and test-config2.yml, respectively:

5.1. Hammer IR and Meta Variables 61

Hammer, Release 1.0.0

synthesis.inputs:
input_files: ["foo", "bar"]
top_module: "z1top.xdc"

vlsi:
core:

technology: "hammer.technology.nop"

synthesis_tool: "hammer.synthesis.nop"

par.inputs:
input_files: ["foo", "bar"]
top_module: "z1top.xdc"

vlsi:
core:

technology: "${foo.subst}"

par_tool: "hammer.par.nop"

foo.subst: "hammer.technology.nop2"

test/syn-rundir/par-output-history.yml after executing the command hammer-vlsi --dump-history -p
test-config.yml -p test-config2.yml --obj_dir test syn-par:

foo.subst: hammer.technology.nop2 # Modified by: test-config2.yml
par.inputs.input_files: # Modified by: test-config2.yml
- foo
- bar

par.inputs.top_module: z1top.xdc # Modified by: test-config2.yml
synthesis.inputs.input_files: # Modified by: test-config.yml
- foo
- bar

synthesis.inputs.top_module: z1top.xdc # Modified by: test-config.yml
vlsi.core.technology: hammer.technology.nop2 # Modified by: test-config.yml,␣
→˓test-config2.yml
vlsi.core.synthesis_tool: hammer.synthesis.nop # Modified by: test-config.yml
vlsi.core.par_tool: hammer.par.nop # Modified by: test-config2.yml

5.1.10 Key Description Lookup

With the ruamel.yaml package, Hammer can execute the info action, allowing users to look up the description of
most keys. The comments must be structured like so in order to be read properly:

foo: bar # this is a comment
this is another comment for the key "foo"

Hammer will take the descriptions from any defaults.yml files.

Running hammer-vlsi -p test-config.yml info (assuming the above configuration is in defaults.yml):

62 Chapter 5. Hammer Use

Hammer, Release 1.0.0

foo.bar
Select from the current level of keys: foo.bar

apple
price
Select from the current level of keys: apple
--
Key: foo.bar.apple
Value: banana
Description: # type of fruit
History: ["defaults.yml"]
--

Continue querying keys? [y/n]: y

foo.bar
Select from the current level of keys: foo.bar

apple
price
Select from the current level of keys: price
--
Key: foo.bar.price
Value: 2
Description: # price of fruit
History: ["defaults.yml"]
--

Keys are queried post-resolution of all meta actions, so their values correspond to the project configuration after other
actions like syn or par.

5.1.11 Reference

For a more comprehensive view, please consult the hammer.config API documentation in its implementation here:

• https://github.com/ucb-bar/hammer/blob/master/hammer/config/config_src.py

• https://github.com/ucb-bar/hammer/blob/master/tests/test_config.py

In config_src.py, most supported meta actions are contained in the directives list of the get_meta_directives
method.

5.2 Hammer APIs

Hammer has a growing collection of APIs that use objects defined by the technology plugin, such as stackups and
special cells. They expose useful extracted information from Hammer IR to other methods, such as in tool plugins that
will implement this information in a tool-compatible manner.

For syntax details about the Hammer IR needed to use these APIs, refer to the defaults.yml.

5.2. Hammer APIs 63

https://github.com/ucb-bar/hammer/blob/master/hammer/config/config_src.py
https://github.com/ucb-bar/hammer/blob/master/tests/test_config.py
https://github.com/ucb-bar/hammer/blob/master/hammer/config/defaults.yml

Hammer, Release 1.0.0

5.2.1 Power Specification

Simple power specs are specified using the Hammer IR key vlsi.inputs.supplies, which is then translated into a
a Supply object. hammer_vlsi_impl exposes the Supply objects to other APIs (e.g. power straps) and can generate
the CPF/UPF files depending on which specification the tools support. Multi-mode multi-corner (MMMC) setups are
also available by setting vlsi.inputs.mmmc_corners and manual power spec definitions are supported by setting
the relevant vlsi.inputs.power_spec... keys.

5.2.2 Timing Constraints

Clock and pin timing constraints are specified using the Hammer IR keys vlsi.inputs.clocks/output_loads/
delays. These objects can be turned into SDC-style constraints by hammer_vlsi_impl for consumption by supported
tools.

5.2.3 Floorplan & Placement

Placement constraints are specified using the Hammer IR key vlsi.inputs.placement_constraints. These con-
straints are very flexible and have varying inputs based on the type of object the constraint applies to, such as hierarchical
modules, hard macros, or obstructions. At minimum, an (x, y) coordinate corresponding to the lower left corner must
be given, and additional parameters such as width/height, margins, layers, or orientation are needed depending on the
type of constraint. Place-and-route tool plugins will take this information and emit the appropriate commands during
floorplanning. Additional work is planned to ensure that floorplans are always legal (i.e. on grid, non-overlapping,
etc.).

All Hammer tool instances have access to a method that can produce graphical visualization of the floorplan as an
SVG file, viewable in a web browser. To use it, call the generate_visualization() method from any custom hook
(see Extending Hammer with Hooks). The options for the visualization tool are in the Hammer IR key vlsi.inputs.
visualization.

5.2.4 Bumps

Bump constraints are specified using the Hammer IR key vlsi.inputs.bumps. Rectangular-gridded bumps are sup-
ported, although bumps at fractional coordinates in the grid and deleted bumps are allowed. The place-and-route tool
plugin translates the list of bump assignments into the appropriate commands to place them in the floorplan and enable
flip-chip routing. The bumps API is also used by the PCB plugin to emit the collateral needed by PCB layout tools
such as Altium Designer. This API ensures that the bumps are always in correspondence between the chip and PCB.

The visualization tool mentioned above can also display bump placement and assignments. There are options to view
the bumps from the perspective of the ASIC designer or the PCB designer. The views are distinguishable by a reference
dot displayed in the left and right corners for the ASIC and PCB perspectives, respectively.

5.2.5 Pins

Pin constraints are specified using the Hammer IR key vlsi.inputs.pin. PinAssignments objects are generated and
passed to the place-and-route tool to place pins along specified block edges on specified metal layers. Preplaced (e.g.
hard macros in hierarchical blocks) pins are also supported so that they are not routed. Additional work is planned
to use this API in conjunction with the placement constraints API to allow for abutment of hierarchical blocks, which
requires pins to be aligned on abutting edges.

64 Chapter 5. Hammer Use

Hammer, Release 1.0.0

5.2.6 Power Straps

Power strap constraints are specified using multiple Hammer IR keys in the par namespace.You can find the keys in
<tech>/defaults.yml under the tech plugin directory. An example from asap7 is as follows:

Listing 1: ASAP7 default power straps setting

1 par.power_straps_mode: generate # Power straps (most DRC-clean)
2 par.generate_power_straps_method: by_tracks
3 par.generate_power_straps_options:
4 by_tracks:
5 strap_layers:
6 - M3
7 - M4
8 - M5
9 - M6

10 - M7
11 - M8
12 - M9
13 pin_layers:
14 - M9
15 track_width: 7 # minimum allowed for M2 & M3
16 track_spacing: 0
17 track_spacing_M3: 28 # space straps apart evenly, in conjunction w/ track_

→˓utilization_M3
18 track_start: 10
19 power_utilization: 0.25
20 power_utilization_M3: 0.6 # together with track_spacing_M3 results in approx. 0.25␣

→˓eff. utilization
21 power_utilization_M8: 1.0
22 power_utilization_M9: 1.0

The default keys for all hammer configs are defined in the defaults.yml, which contains detailed comments on what
each key does. Here is the default setting and parameter descriptions for power strap generation.

Listing 2: Hammer global default power straps setting

1 generate_power_straps_method: "by_tracks" # If power_straps_mode is 'generate', which␣
→˓method to use.

2 # Currently, the valid options are:
3 # - by_tracks - Specify the power strap plan per layer in terms of tracks
4

5 generate_power_straps_options:
6 # Default settings for power strap generation modes
7 # Keys are the valid values of the 'generate_power_straps_method' key above
8 by_tracks:
9 blockage_spacing: "par.blockage_spacing" # Spacing from end of strap to a block or␣

→˓blockage
10 # Overrideable by appending _<layer name>
11 # type: Decimal
12 blockage_spacing_meta: lazycrossref
13

14 track_width: 5 # Number of routing tracks to be consumed by an individual strap
15 # Overrideable by appending _<layer name>

(continues on next page)

5.2. Hammer APIs 65

https://github.com/ucb-bar/hammer/blob/master/hammer/technology/asap7/defaults.yml
https://github.com/ucb-bar/hammer/blob/master/hammer/config/defaults.yml

Hammer, Release 1.0.0

(continued from previous page)

16 # type: int
17

18 track_start: 0 # The first track to contain a power stripe
19 # Overrideable by appending _<layer name>
20 # type: int
21 # TODO(johnwright): include an auto-center option
22

23 track_offset: 0.0 # Absolute offset for straps relative to the design bounding box␣
→˓origin

24 # Overrideable by appending _<layer name>
25 # type: Decimal
26

27 track_spacing: 0 # Number of routing tracks between sets of straps (0 is␣
→˓recommended)

28 # Overrideable by appending _<layer name>
29 # type: int
30

31 power_utilization: 0.1 # Ratio of total routing tracks to dedicate to power straps,
→˓ which is used to calculate set pitch

32 # Overrideable by appending _<layer name>
33 # type: float
34

35 antenna_trim_shape: stripe # "none" or "stripe", specifies antenna trimming␣
→˓strategy

36 # Overrideable by appending _<layer name>
37 # type: str

The currently supported API supports power strap generation by tracks, which auto-calculates power strap width, spac-
ing, set-to-set distance, and offsets based on basic DRC rules specified in the technology Stackup object.

The technology Stackup information (“stackups”) can be found in the <tech>.tech.json file under the tech plugin di-
rectory. The “stackups” usually are located near the end of the <tech> .tech.json file. An example from asap7 is as
follows:

Listing 3: ASAP7 stackup object

1 {
2 "name": "asap7_3Ma_2Mb_2Mc_2Md",
3 "grid_unit": 0.001,
4 "metals": [
5 {"name": "M1", "index": 1, "direction": "horizontal", "min_width": 0.072, "pitch

→˓": 0.144, "offset": 0.0, "power_strap_widths_and_spacings": [{"width_at_least": 0.0,
→˓"min_spacing": 0.072}], "power_strap_width_table": [], "grid_unit": 0.001},

6 {"name": "M2", "index": 2, "direction": "horizontal", "min_width": 0.072, "pitch
→˓": 0.144, "offset": -1.08, "power_strap_widths_and_spacings": [{"width_at_least": 0.0,
→˓"min_spacing": 0.072}], "power_strap_width_table": [0.072, 0.36, 0.648, 0.936, 1.224,␣
→˓1.512], "grid_unit": 0.001},

7 {"name": "M3", "index": 3, "direction": "vertical", "min_width": 0.072, "pitch":␣
→˓0.144, "offset": 0.0, "power_strap_widths_and_spacings": [{"width_at_least": 0.0, "min_
→˓spacing": 0.072}], "power_strap_width_table": [0.072, 0.36, 0.648, 0.936, 1.224, 1.
→˓512], "grid_unit": 0.001},

8 {"name": "M4", "index": 4, "direction": "horizontal", "min_width": 0.096, "pitch
→˓": 0.192, "offset": 0.048, "power_strap_widths_and_spacings": [{"width_at_least": 0.0,

(continues on next page)

66 Chapter 5. Hammer Use

(https://github.com/ucb-bar/hammer/blob/master/hammer/technology/asap7/asap7.tech.json

Hammer, Release 1.0.0

(continued from previous page)

→˓"min_spacing": 0.096}, {"width_at_least": 0.1, "min_spacing": 0.288}], "power_strap_
→˓width_table": [0.096, 0.48, 0.864, 1.248, 1.632], "grid_unit": 0.001},

9 {"name": "M5", "index": 5, "direction": "vertical", "min_width": 0.096, "pitch":␣
→˓0.192, "offset": 0.048, "power_strap_widths_and_spacings": [{"width_at_least": 0.0,
→˓"min_spacing": 0.096}, {"width_at_least": 0.1, "min_spacing": 0.288}], "power_strap_
→˓width_table": [0.096, 0.48, 0.864, 1.248, 1.632, 2.016, 2.4, 2.784, 3.168, 3.552, 3.
→˓936], "grid_unit": 0.001},

10 {"name": "M6", "index": 6, "direction": "horizontal", "min_width": 0.128, "pitch
→˓": 0.256, "offset": 0.064, "power_strap_widths_and_spacings": [{"width_at_least": 0.0,
→˓"min_spacing": 0.128}, {"width_at_least": 0.1, "min_spacing": 0.288}], "power_strap_
→˓width_table": [0.128, 0.64, 1.152, 1.664, 2.176], "grid_unit": 0.001},

11 {"name": "M7", "index": 7, "direction": "vertical", "min_width": 0.128, "pitch":␣
→˓0.256, "offset": 0.064, "power_strap_widths_and_spacings": [{"width_at_least": 0.0,
→˓"min_spacing": 0.128}, {"width_at_least": 0.1, "min_spacing": 0.288}], "power_strap_
→˓width_table": [0.128, 0.64, 1.152, 1.664, 2.176], "grid_unit": 0.001},

12 {"name": "M8", "index": 8, "direction": "horizontal", "min_width": 0.16, "pitch
→˓": 0.32, "offset": 0.16, "power_strap_widths_and_spacings": [{"width_at_least": 0.0,
→˓"min_spacing": 0.16}, {"width_at_least": 0.239, "min_spacing": 0.24}, {"width_at_least
→˓": 0.319, "min_spacing": 0.32}, {"width_at_least": 0.479, "min_spacing": 0.48}, {
→˓"width_at_least": 1.999, "min_spacing": 2.0}, {"width_at_least": 3.999, "min_spacing":␣
→˓4.0}], "power_strap_width_table": [], "grid_unit": 0.001},

13 {"name": "M9", "index": 9, "direction": "vertical", "min_width": 0.16, "pitch":␣
→˓0.32, "offset": 0.16, "power_strap_widths_and_spacings": [{"width_at_least": 0.0, "min_
→˓spacing": 0.16}, {"width_at_least": 0.239, "min_spacing": 0.24}, {"width_at_least": 0.
→˓319, "min_spacing": 0.32}, {"width_at_least": 0.479, "min_spacing": 0.48}, {"width_at_
→˓least": 1.999, "min_spacing": 2.0}, {"width_at_least": 3.999, "min_spacing": 4.0}],
→˓"power_strap_width_table": [], "grid_unit": 0.001},

14 {"name": "Pad", "index": 10, "direction": "redistribution", "min_width": 0.16,
→˓"pitch": 8.16, "offset": 0.0, "power_strap_widths_and_spacings": [{"width_at_least": 0.
→˓0, "min_spacing": 8.0}, {"width_at_least": 47.999, "min_spacing": 12.0}], "power_strap_
→˓width_table": [], "grid_unit": 0.001}

15]
16 }
17],
18 "sites": [

The keys in the Stackup object are defined in stackup.py as follows.

Listing 4: Description for a metal layer/stackup

1 name: Metal layer name (e.g. M1, M2).
2 index: The order in the stackup (lower is closer to the substrate).
3 direction: The preferred routing direction of this metal layer, or
4 RoutingDirection.Redistribution for non-routing top-level
5 redistribution metals like Aluminium.
6 min_width: The minimum wire width for this layer.
7 max_width: The maximum wire width for this layer.
8 pitch: The minimum cross-mask pitch for this layer (NOT same-mask pitch
9 for multiple-patterned layers). Width of routing grid for a given layer.

10 To route denser wires on chip, multiple masks are required.
11 During fabrication, the masks are applied separately with some spatial offsets
12 to achieve denser line patterning. For more information on multiple-

(continues on next page)

5.2. Hammer APIs 67

https://github.com/ucb-bar/hammer/blob/master/hammer/tech/stackup.py

Hammer, Release 1.0.0

(continued from previous page)

→˓patterning,
13 check https://en.wikipedia.org/wiki/Multiple_patterning
14 offset: The routing track offset from the origin for the first track in this layer.
15 (0 = first track is on an axis).
16 power_strap_widths_and_spacings: A list of WidthSpacingTuples that specify the␣

→˓minimum
17 spacing rules for an infinitely long wire of␣

→˓variying width.
18 power_strap_width_table: A list of allowed metal widths in the technology.
19 Widths smaller than the last number must be quantized to a␣

→˓value in the table.
20 grid_unit: The fixed-point decimal value of a minimum grid unit (e.g. 1nm = 0.001).

The basic pieces of information needed are the desired track utilization per strap and overall power strap density.
Powerstraps are routed in pairs of Vdd and Vss. Based on the effective power utilization and track spacing, there are
three ways to route powerstraps.

For track spacing = 0 and effective power utilization = 100%, powerstraps are routed as follows.

For track spacing = 0 and effective power utilization < 100%, powerstraps are routed as follows.

68 Chapter 5. Hammer Use

Hammer, Release 1.0.0

For track spacing > 0 and effective power utilization < 100%, powerstraps are routed as follows.

5.2. Hammer APIs 69

Hammer, Release 1.0.0

The currently supported API supports power strap generation by tracks, which auto-calculates power strap width, spac-
ing, set-to-set distance, and offsets based on basic DRC rules specified in the technology Stackup object. The basic
pieces of information needed are the desired track utilization per strap and overall power strap density. Different values
can be specified on a layer-by-layer basis by appending _<layer name> to the end of the desired option.

5.2.7 Special Cells

Special cells are specified in the technology’s JSON, but are exposed to provide lists of cells needed for certain steps,
such as for fill, well taps, and more. Synthesis and place-and-route tool plugins can grab the appropriate type of special
cell for the relevant steps.

70 Chapter 5. Hammer Use

Hammer, Release 1.0.0

5.2.8 Submission

Each tool has run submission options given by the Hammer IR key <tool type>.submit. Using the command and
settings keys, a setup for LSF or similar workload management platforms can be standardized.

5.3 Flow Control

Physical design is necessarily an iterative process, and designers will often require fine control of the flow within any
given action. This allows for rapid testing of new changes in the Hammer IR to improve the quality of results (QoR)
after certain steps.

Given the flow defined by tool steps and hooks (described in the next section), users can select ranges of these to run.
The tool script will then be generated with commands corresponding to only the steps that are to be run.

5.3.1 Command-line Interface

Flow control is specified with the following optional Hammer command-line flags, which must always target a valid
step/hook:

• --start_before_step <target>: this starts the tool from (inclusive) the target step. Alternate flag:
--from_step

• --start_after_step <target>: this starts the tool from (exclusive) the target step. Alternate flag:
--after_step

• --stop_after_step: this stops the tool at (inclusive) the target step. Alternate flag: --to_step

• --stop_before_step: this stops the tool at (exclusive) the target step. Alternate flag: --until_step

• --only_step: this only runs the target step

As hammer-vlsi is parsing through the steps for a given tool, it will print debugging information indicating which
steps are skipped and which are run.

Certain combinations are not allowed:

• --only_step is not compatible with any of the other flags

• --start_before_step and start_after_step may not be specified together

• --stop_after_step and --stop_before_step may not be specified together

• --start_before_step and --stop_before_step may not be the same step

• --start_after_step and --stop_after_step may not be the same step

• --start_after_step and --stop_before_step may not be the same or adjacent steps

Logically, a target of stop_{before|after}_step before start_{before|after}_stepwill also not run anything
(though it is not explicitly checked).

5.3. Flow Control 71

Hammer, Release 1.0.0

5.4 Extending Hammer with Hooks

It is unlikely that using the default Hammer APIs alone will produce DRC- and LVS-clean designs with good QoR
in advanced technology nodes if the design is sufficiently complex. To solve that, Hammer is extensible using hooks.
These hooks also afford power users additional flexibility to experiment with CAD tool commands to tweak aspects of
their designs. The hook framework is inherently designed to enable reusability, because successful hook methods that
solve a technology-specific problem may be upstreamed into the technology plugin for future designs.

5.4.1 Hook Methods

Hooks are fundamentally Python methods that extend a given tool’s set of available steps and can inject additional TCL
commands into the flow. Hook methods need to take in an instance of a particular HammerTool, which provides them
with the full set of Hammer IR available to the tool. Hooks (depending on how they are included, see below) get turned
into step objects that can be targeted with --from/after/to/until_step and other hooks.

Hooks can live in a Python file inside the design root so that it is available to the class that needs to extend the default
CLIDriver. An example of some skeletons of hooks are found in Chipyard. For more comprehensive examples, refer
to the hooks unit tests in the TestHammerToolHooks class of test_hooks.py.

5.4.2 Including Hooks

Hooks modify the flow using a few HammerTool methods, such as:

• make_replacement_hook(<target>, <hook_method>): this swaps out an existing target step/hook with
the hook method

• make_pre_insertion_hook(<target>, <hook_method>): this inserts the hook method before the target
step/hook

• make_post_insertion_hook(<target>, <hook_method>): this inserts the hook method after the target
step/hook

• make_removal_hook(<target>): this removes the target step/hook from the flow

Note: <target> should be a string (name of step/hook), while <hook_method> is the hook method itself. All of the
hook methods specified this way are targetable by other hooks.

Sometimes, CAD tools do not save certain settings into checkpoint databases. As a result, when for example a
--from_step is called, the setting will not be applied when the database from which to continue the flow is read
in. To get around this, a concept of “persistence” is implemented with the following methods:

• make_persistent_hook(<hook_method>): this inserts the hook method at the beginning of any tool invoca-
tion, regardless of which steps/hooks are run

• make_pre_persistent_hook(<target>, <hook_method>): this inserts the hook method at the beginning
of any tool invocation, as long as the target step/hook is located at or after the first step to be run

• make_post_persistent_hook(<target>, <hook_method>): this inserts the hook method at the beginning
of any tool invocation if the target step/hook is before the first step to be run, or right after the target step/hook if
that step/hook is within the steps to be run.

All persistent hooks are NOT targetable by flow control options, as their invocation location may vary. However,
persistent hooks ARE targetable by make_replacement/pre_insertion/post_insertion/removal_hook. In
this case, the hook that replaces or is inserted pre/post the target persistent hook takes on the persistence properties of
the target persistence hook.

Some examples of these methods are found in the Chipyard example, linked above.

72 Chapter 5. Hammer Use

https://github.com/ucb-bar/chipyard/blob/main/vlsi/example-vlsi
https://github.com/ucb-bar/hammer/blob/master/tests/test_hooks.py

Hammer, Release 1.0.0

A list of these hooks must be provided in an implementation of method such as get_extra_par_hooks in the
command-line driver. This new file becomes the entry point into Hammer, overriding the default hammer-vlsi exe-
cutable.

5.4.3 Technology, Tool, and User-Provided Hooks

Note: Hooks may be provided by the technology plugin, the tool plugin, and/or the user. The order of step & hook
priority is as follows, from lowest to highest:

1. Technology default steps

2. Technology plugin hooks

3. Tool plugin hooks

4. User hooks

A technology plugin specifies hooks in its __init__.py (as a method inside its subclass of HammerTechnology).
It should implement a get_tech_<action>_hooks(self, tool_name: str) method. The tool name parameter
may be checked by the hook implementation because multiple tools may implement the same action. Technology plugin
hooks may only target tool default steps to insert/replace.

The included ASAP7 technology plugin provides an example of how to inject two different types of hooks: 1) a per-
sistent hook invoked anytime after the init_design step to set top & bottom routing layers, and 2) two post-insertion
hooks, one to modify the floorplan for DRCs and the other to scale down a GDS post-place-and-route using the gdstk
or gdspy GDS manipulation utilities. Note that the persistent hook that is included does not necessarily need to be
persistent (Innovus does retain this setting in snapshot databases), but it serves as an example for building your own
tech plugin.

A tool plugin specifies hooks in its __init__.py (as a method inside its subclass of HammerTool). It should implement
a get_tool_hooks(self) method. In contrast to the tech-supplied hooks, the action name and tool name are not
specified because a tool instance can only correspond to a single action. Tool plugin hooks may target its own default
steps and technology plugin hooks to insert/replace.

A user specifies hooks in the command-line driver and should implement a get_extra_<action>_hooks(self)
method. User hooks may target tool default steps, technology plugin hooks, and tool plugin hooks to insert/replace. A
good example is the example-vlsi file in the Chipyard example, which implements a get_extra_par_hooks(self)
method that returns a list of hook inclusion methods.

The priority means that if both the technology and user specify persistent hooks, any duplicate commands in the user’s
persistent hook will override those from the technology’s persistent hook.

5.5 Hammer Buildfile

Hammer natively supports a GNU Make-based build system to manage build dependencies. To use this flow, vlsi.
core.build_system must be set to make. Hammer will generate a Makefile include in the object directory named
hammer.d after calling the build action:

hammer-vlsi -e env.yml -p config.yml --obj_dir build build

build/hammer.d will contain environment variables needed by Hammer and a target for each major Hammer action
(e.g. par, synthesis, etc. but not syn-to-par, which is run automatically when calling make par). For a flat
design, the dependencies are created betwen the major Hammer actions. For hierarchical designs, Hammer will use
the hierarchy to build a dependency graph and construct the Make target dependencies appropriately.

5.5. Hammer Buildfile 73

Hammer, Release 1.0.0

hammer.d should be included in a higher-level Makefile. While hammer.d defines all of the variables that it needs,
there are often reasons to set these elsewhere. Because hammer.d uses ?= assignment, the settings created in the
top-level Makefile will persist. An example of this setup is found in Chipyard.

To enable interactive usage, hammer.d also contains a set of companion “redo” targets (e.g. redo-par and redo-syn).
These targets intentionally have no dependency information; they are for advanced users to make changes to the input
config and/or edit the design manually, then continue the flow. Additional arguments can be passed to the “redo” targets
with the HAMMER_EXTRA_ARGS environment variable, for the following example uses:

• “Patching” the configuration for an action using HAMMER_EXTRA_ARGS="-p patch.yml".

• Flow control using --to_step/--until_step and --from_step/after_step to stop a run at a particular
step or resume one from a previous iteration.

5.6 Hierarchical Hammer Flow

Hammer supports a bottom-up hierarchical flow. This is beneficial for very large designs to reduce the computing
power by partitioning it into submodules, especially if there are many repeated instances of those modules.

5.6.1 Hierarchical Hammer Config

The hierarchal flow is controlled in the vlsi.inputs.hierarchal namespace. To specify hierarchical mode, you
must specify the following keys. In this example, we have our top module set as ChipTop, with a submodule ModuleA
and another submdule ModuleAA below that (these are names of Verilog modules).

vlsi.inputs.hierarchical:
mode: hierarchical
top_module: ChipTop
config_source: manual
manual_modules:
- ChipTop:

- ModuleA
- ModuleA:
- ModuleAA

constraints:
- ChipTop:
- vlsi.core...
- vlsi.inputs...

- ModuleA:
- vlsi.core...
- vlsi.inputs...

- ModuleAA:
- vlsi.core...
- vlsi.inputs...

Note how the configuration specific to each module in vlsi.inputs.hierarchical.constraints are list items,
whereas in a flat flow, they would be at the root level.

Placement constraints for each module, however, are not specified here. Instead, they should be specified in vlsi.
inputs.hierarchical.manual_placement_constraints. The parameters such as x, y, width, height, etc.
are omitted from each constraint for clarity. In the bottom-up hierarchal flow, instances of submodules are of type:
hardmacro because they are hardened from below.

74 Chapter 5. Hammer Use

https://github.com/ucb-bar/chipyard/blob/main/vlsi/Makefile

Hammer, Release 1.0.0

vlsi.inputs.hierarchical:
manual_placement_constraints_meta: append
manual_placement_constraints:
- ChipTop:
- path: "ChipTop"
type: toplevel

- path: "ChipTop/path/to/instance/of/ModuleA"
type: hardmacro

- ModuleA:
- path: "ModuleA"
type: toplevel

- path: "ModuleA/path/to/instance/of/ModuleAA"
type: hardmacro

- ModuleAA:
- path: "moduleAA"
type: toplevel

5.6.2 Flow Management and Actions

Based on the structure in vlsi.inputs.hierarchical.manual_modules, Hammer constructs a hierarchical flow
graph of dependencies. In this particular example, synthesis and place-and-route of ModuleAA will happen first. Syn-
thesis of ModuleA will then depend on the place-and-route output of ModuleAA, and so forth.

These are enumerated in the auto-generated Makefile, hammer.d, which is placed in the directory pointed to by the
--obj_dir command line flag when the buildfile action is run. This action must be run BEFORE executing your
flow. If you adjust the hierarchy, you must re-run this action.

To perform a flow action (syn, par, etc.) for a module using the auto-generated Makefile, the name of the action is
appended with the module name. For example, the generated Make target for synthesis of ModuleA is syn-ModuleA.
A graphical example of the auto-generated dependency graph with RocketTile under a ChipTop is shown below:

The auto-generated Makefile also has redo- targets corresponding to each generated action, e.g. redo-syn-ModuleA.
These targets break the dependency graph and allow you to re-run any action with new input configuration without
forcing the flow to re-run from the beginning of the graph.

5.6.3 Cadence Implementation

Currently, the hierarchical flow is implemented with the Cadence plugin using its Interface Logic Model (ILM) method-
ology. At the end of each submodule’s place-and-route, an ILM is written as the hardened macro, which contains an
abstracted view of its design and timing models only up to the first sequential element.

ILMs are similar to LEFs and LIBs for traditional hard macros, except that the interface logic is included in all views.
This means that at higher levels of hierarchy, the ILM instances can be flattened at certain steps, such as those that
perform timing analysis on the entire design, resulting in a more accurate picture of timing than a normal LIB would
afford.

5.6. Hierarchical Hammer Flow 75

Hammer, Release 1.0.0

5.6.4 Tips for Constraining Hierarchical Modules

In a bottom-up hierarchical flow, is is important to remember that submodules do not know the environment in which
they will placed. This means:

• At minimum, the pins must be placed on the correct edges of the submodule on metal layers that are accessible
in the parent level. Depending on the technology, this may interfere with things like power straps near the edge,
so custom obstructions may be necessary. If fixed IOs are placed in submodules (e.g. bumps), then in the parent
level, those pins must be promoted up using the preplaced: true option in the pin assignment.

• Clocks should be constrained more tightly for a submodule compared to its parent to account for extra clock
insertion delay, jitter, and skew at increasingly higher levels of hierarchy. Otherwise, you may run into surprise
timing violations in submodule instances even if those passed timing in isolation.

• You may need to specify pin delays vlsi.inputs.delays for many pins to optimize the partitioning of sequen-
tial signals that cross the submodule boundary. By default, without pin delay constraints, the input and output
delay are constrained to be coincident with its related clock arrival at the module boundary.

• Custom SDC constraints that originate from a higher level (e.g. false paths from async inputs) need to be specified
in submodules as well.

• Custom CPFs will need to be written if differently-named power nets need to globally connected between sub-
modules. Similarly, hierarchical flow with custom CPFs can also be used to fake a multi-power domain topology
until Hammer properly supports this feature.

5.6.5 Special Notes & Limitations

1. Hammer IR keys propagate up through the hierarchical tree. For example, if vlsi.inputs.clocks was spec-
ified in the constraints for ModuleAA but not for ModuleA, ModuleA will inherit ModuleAA’s constraints. Take
special care of where your constraints come from, especially for a parent module with more than one submodule.
To avoid confusion, it is recommended to specify the same set of keys for every module.

2. Hammer IR keys specified at the root level (i.e. outside of vlsi.inputs.hierarchical.constraints) do
not override the corresponding submodule constraints. However, if you add a Hammer IR file using -p on the
command line (after the file containing vlsi.inputs.hierarchical.constraints), those keys are global
and override submodule constraints unless a meta action is specified. To avoid confusion, it is recommended to
specify all constraints with vlsi.inputs.hierarchical.constraints.

3. Due to the structure of vlsi.inputs.hierarchical.constraints as a list structure, currently, there are the
following limitations:

• You must include all of the constraints in a single file. The config parser is unable to combine constraints
from differnt files because most meta actions do not work on list items (advanced users will need to use
deepsubst). This will make it harder for collaboration, and unfortunately, changes to module constraints
at a higher level of hierarchy after submodules are hardened will trigger the Make dependencies, so you
will need to modify the generated Makefile or use redo-targets.

• Other issues have been observed, such as the bump API failing (see this issue at the top module level. This
is caused by similar mechanisms as above. The workaround is to ensure that bumps are specified at the
root level for only the top module and the bumps step is removed from submodule par actions.

4. Most Hammer APIs are not yet intelligent enough to constrain across hierarchical boundaries. For example:

• The power straps API is unable to pitch match power straps based on legalized placement of submodule
instances or vice versa.

• The pin placement API does not match the placement of pins that may face each other in two adjacent
submodule instances. You will need to either manually place the pins yourself or ensure a sufficient routing
channel between the instances at the parent level.

76 Chapter 5. Hammer Use

https://github.com/ucb-bar/hammer/issues/401

Hammer, Release 1.0.0

5. Hammer does not support running separate decks for submodule DRC and LVS. Technology plugins may need to
be written with Makefiles and/or technology-specific options that will implement different checks for submodules
vs. the top level.

5.6. Hierarchical Hammer Flow 77

Hammer, Release 1.0.0

78 Chapter 5. Hammer Use

CHAPTER

SIX

HAMMER EXAMPLES

The following are prebuilt example designs, toolchain and/or flows you can use

6.1 Introduction with Sky130 and OpenROAD

The following directions will get a simple pass design from RTL to GDS using the OpenROAD tools and the Skywater
130nm PDK. These directions are meant to provide the minimal set of steps to do so, please reference the next section,
Hammer End-to-End Integration Tests, for more detailed descriptions of all files and commands.

6.1.1 Instructions

First, follow the Hammer Developer Setup to clone Hammer and install/activate the poetry virtual environment.

Next, run the setup script to install the OpenROAD tools using Conda, and Skywater 130nm PDK using the Open-PDKs
tool. This step will take a long time due to the amount and size of the required installs. You should supply a PREFIX
path to a directory that will serve as the root of all PDK files and supporting tools (total size of all files is ~42GB),
otherwise the script will default to installing to your home directory (~/).

cd hammer/e2e
./scripts/setup-sky130-openroad.sh [PREFIX]

You should now have a file configs-env/my-env.yml containing all required tool and technology paths for this
tutorial. To point to your custom environment setup, set the Make variable env=my. Additionally, we set the design,
pdk, and tools Make variables to the appropriate RTL design, PDK, and tools flow, respecively. Now simply run the
VLSI flow:

make design=pass pdk=sky130 tools=or env=my build
make design=pass pdk=sky130 tools=or env=my syn
make design=pass pdk=sky130 tools=or env=my par
make design=pass pdk=sky130 tools=or env=my drc
make design=pass pdk=sky130 tools=or env=my lvs

After Place-and-Route completes, the final database can be opened in an interactive OpenROAD session. Hammer
generates a convenient script to launch these sessions:

cd ./build-sky130-or/pass/par-rundir
./generated-scripts/open_chip

After DRC and LVS complete, the final results may be viewed with the following scripts:

79

https://theopenroadproject.org
https://github.com/google/skywater-pdk
https://github.com/google/skywater-pdk
https://hammer-vlsi.readthedocs.io/en/stable/Examples/e2e.html
https://hammer-vlsi.readthedocs.io/en/stable/Hammer-Basics/Hammer-Setup.html#developer-setup
https://github.com/RTimothyEdwards/open_pdks
https://github.com/RTimothyEdwards/open_pdks

Hammer, Release 1.0.0

View DRC results:
cd ./build-sky130-or/pass/drc-rundir
./generated-scripts/view_drc

View LVS results:
cd ./build-sky130-or/pass/lvs-rundir
./generated-scripts/open_chip

Congrats, you’ve just run your pass design from RTL to GDS with Hammer!

6.1.2 Next Steps

At this point, you should go through the Hammer End-to-End Integration Tests documentation to learn how to configure
Hammer further. We’ve also outlined some common next steps below.

Commercial flow

This flow may be run with commercial tools by setting the Make variable tools=cm, which selects the tool plugins via
configs-tools/cm.yml. You will need to create a custom environment YAML file with your environment configu-
ration, in configs-env/<my_custom>-env.yml. As a minimum, you must specify YAML keys below for the CAD
tool licenses and versions/paths of the tools you are using, see examples in configs-env/.

Commercial tool licenses/paths
mentor.mentor_home: "" # Base path to where Mentor tools are installed
mentor.MGLS_LICENSE_FILE: "" # Mentor license server/file

cadence.cadence_home: "" # Base path to where Cadence tools are installed
cadence.CDS_LIC_FILE: "" # Cadence license server/file

synopsys.synopsys_home: "" # Base path to where Synopsys tools are installed
synopsys.SNPSLMD_LICENSE_FILE: "" # Synopsys license server/files
synopsys.MGLS_LICENSE_FILE: ""

Commercial tool versions/paths
sim.vcs.version: ""
synthesis.genus.version: "" # NOTE: for genus/innovus/joules, must specify binary␣

→˓path if version < 221
par.innovus.version: ""
power.joules.joules_bin: ""

Now re-run a similar flow as before, but pointing to your environment and the commercial tool plugins:

make design=pass pdk=sky130 tools=cm env=<my_custom> build

Running DRC/LVS with commercial tools requires access to an NDA-version of the Skywater PDK. We support running
DRC/LVS with either Cadence Pegasus or Siemens Calibre. See the Sky130 documentation for how to point to the NDA
PDKs and run DRC/LVS with their respective tools.

80 Chapter 6. Hammer Examples

https://hammer-vlsi.readthedocs.io/en/stable/Examples/e2e.html
https://hammer-vlsi.readthedocs.io/en/stable/Technology/Sky130.html

Hammer, Release 1.0.0

Chipyard flow

Follow these directions in the Chipyard docs to build your own Chisel SoC design with OpenROAD and Sky130.

6.2 Hammer End-to-End Integration Tests

This folder contains an end-to-end (RTL -> GDS) smoketest flow using Hammer, using the Cadence toolchain, and the
ASAP7 or Skywater 130 PDKs.

6.2.1 Setup

The integration tests use Hammer as a source dependency, so create the e2e poetry environment.

poetry install
poetry shell

6.2.2 Overview

Flow Selection

The following variables in the Makefile select the target flow to run:

• design - RTL name

– {pass, gcd}

• pdk - PDK name

– {sky130, asap7}

• tools - CAD tool flow

– {cm (commercial), or (OpenROAD)}

• env - compute environment

– {bwrc (BWRC), a (Millenium), inst (instructional machines)}

The outputs of the flow by default reside in OBJ_DIR=build-<pdk>-<tools>/<design>/

Configs

The Hammer configuration files consist of environment (ENV_YML) and project (PROJ_YMLS) configurations. The
environment configs take precedence over ALL project configs. The order of precedence for the project configs reads
from right to left (i.e. each file overrides all files to its left). All configuration files are summarized below.

lowest precedence ---> highest␣
→˓precendence
CONFS ?= $(PDK_CONF) $(TOOLS_CONF) $(DESIGN_CONF) $(DESIGN_PDK_CONF) $(SIM_CONF) $(POWER_
→˓CONF)

• ENV_YML- Environment configs that specify CAD tool license servers and paths are in configs-env. This will
take precedence over any other config file

• PDK_CONF - PDK configs shared across all runs with this PDK are in configs-pdk

6.2. Hammer End-to-End Integration Tests 81

https://chipyard.readthedocs.io/en/latest/VLSI/Sky130-OpenROAD-Tutorial.html

Hammer, Release 1.0.0

• TOOLS_CONF - Tool configs to select which CAD tool flow to use are in configs-tools

• Design-specific configs are located in configs-design/<design>, and are summarized below:

– DESIGN_CONF - the common design config (design input files, anything else design-specific)

– DESIGN_PDK_CONF - PDK-specific configs for this particular design (clock, placement, pin constraints)

– SIM_CONF - Simulation configs for post-RTL, Synthesis, or PnR simulation

– POWER_CONF - Power simulation configs for post-RTL, Synthesis, or PnR simulation (NOTE: The Makefile
expects the power config filename for each simulation level + PDK to be in the format power-{rtl,
syn,par}-<pdk>.yml, while the joules.yml and voltus.yml files serve as templates for the Cadence
Joules/Voltus power tools)

6.2.3 Run the Flow

First, use Hammer to construct a Makefile fragment with targets for all parts of the RTL -> GDS flow. Specify the
appropriate env/tools/pdk/design variables to select which configs will be used.

make build
same as: `make env=bwrc tools=cm pdk=sky130 design=pass build`

Hammer will generate a Makefile fragment in OBJ_DIR/hammer.d.

Then run the rest of the flow, making sure to set the env/tools/pdk/design variables as needed:

make sim-rtl
make power-rtl

make syn
make sim-syn
make power-syn

make par
make sim-par
make power-par

make drc
make lvs

These actions are summarized in more detail:

• RTL simulation

– make sim-rtl

– Generated waveform in OBJ_DIR/sim-rtl-rundir/output.fsdb

• Post-RTL Power simulation

– make sim-rtl-to-power

– make power-rtl

– Generated power reports in OBJ_DIR/power-rtl-rundir/reports

• Synthesis

– make syn

82 Chapter 6. Hammer Examples

Hammer, Release 1.0.0

– Gate-level netlist in OBJ_DIR/syn-rundir/<design>.mapped.v

• Post-Synthesis simulation

– make syn-to-sim

– make sim-syn

– Generated waveform and register forcing ucli script in OBJ_DIR/sim-syn-rundir

• Post-Synthesis Power simulation

– make syn-to-power

– make sim-syn-to-power

– make power-syn

– Generated power reports in OBJ_DIR/power-syn-rundir/reports

• PnR

– make syn-to-par

– make par

– LVS netlist (<design>.lvs.v) and GDS (<design>.gds) in OBJ_DIR/par-rundir

• Post-PnR simulation

– make par-to-sim

– make sim-par

• Post-PnR Power simulation

– make par-to-power

– make sim-par-to-power

– make power-par

– Generated power reports in OBJ_DIR/power-par-rundir

Flow Customization

If at any point you would like to use custom config files (that will override any previous configs), assign the extra
Make variable to a space-separated list of these files. For example, to run the pass design with sky130 through the
commercial flow, but run LVS with Cadence Pegasus instead of the default Siemens Calibre, simply run the following:

make extra="configs-tool/pegasus.yml" build

To use the Hammer step flow control, prepend redo- to any VLSI flow action, then assign the args Make variable
to the appropriate Hammer command line args. For example, to only run the report_power step of the power-rtl
action (i.e. bypass synthesis), run the following:

make args="--only_step report_power" redo-power-rtl

6.2. Hammer End-to-End Integration Tests 83

https://hammer-vlsi.readthedocs.io/en/stable/Hammer-Use/Flow-Control.html

Hammer, Release 1.0.0

6.2.4 Custom Setups

If you’re not using a Berkeley EECS compute node, you can create your own environment setup.

• Create an environment config similar to those in configs-env for your node to specify the CAD tool license
servers and paths/versions of CAD tools and the PDK, and set the ENV_YML variable to this file.

• The rest of the flow should be identical

ASAP7 Install

Clone the asap7 repo somewhere and reference the path in your ENV_YML config.

Sky130 Install

Refer to the Hammer Sky130 plugin README to install the Sky130 PDK, then reference the path in your ENV_YML
config (only the technology.sky130.sky130A key is required).

84 Chapter 6. Hammer Examples

https://github.com/The-OpenROAD-Project/asap7
https://hammer-vlsi.readthedocs.io/en/stable/Technology/Sky130.html

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

85

	Hammer Basics
	Hammer Overview
	Main Hammer
	Tech Plugins
	Tool Plugins
	Calling Hammer
	Summary

	Hammer Setup
	User Setup
	Installing Hammer as a Source Dependency
	From Another Poetry Project
	From a Generic Python Project

	Developer Setup
	Using PyCharm
	Unit Tests with pytest
	Type Checking with mypy
	Testing Different Python Versions with tox
	Adding / Updating Dependencies
	Building Documentation
	Publishing

	Migration Guide
	Selecting Plugins
	import Statements
	Technology JSON
	Plugin File Structure
	Resource Files
	pyproject.toml

	Hammer Technology Plugins
	Hammer Technologies
	HammerTechnology Class

	Hammer Tech JSON
	Technology Install
	DRC/LVS Deck Setup
	Library Setup
	Library Filters

	Stackup
	Sites
	Special Cells
	Don’t Use, Physical-Only Cells
	Full Schema
	TechJSON
	PathPrefix
	Corner
	MinMaxCap
	Provide
	Supplies
	SpiceModelFile
	Library
	DRCDeck
	LVSDeck
	Tarball
	Site
	RoutingDirection
	WidthSpacingTuple
	Metal
	Stackup
	CellType
	SpecialCell

	Hammer Tech defaults.yml
	Sky130 Technology Library
	PDK Setup
	PDK Install

	SRAM Macros
	IO Library
	NDA Files
	Resources

	ASAP7 Technology Library
	Setup and Environment
	Dummy SRAMs
	Known Issues

	Nangate45 Technology Library
	Dummy SRAMs
	Supported Tools

	Hammer Tool Plugins
	Hammer CAD Tools
	Setting up a Hammer CAD Tool Plugin
	Tool Class
	Steps
	Getting Settings
	Writing TCL
	Executing the Tool
	Tool Outputs
	defaults.yml

	OpenROAD Place-and-Route Tool Plugin
	Tool Setup
	Tool Steps
	Step Details
	Macro Placement
	Write Design

	Issue Archiving

	Cadence Joules RTL Power Tool Plugin
	Tool Steps
	Known Issues

	DRC/LVS with IC Validator
	DRC/LVS with Pegasus
	Pegasus usage notes
	Pegasus Design Review usage notes

	Hammer Flow Steps
	Hammer Actions
	Synthesis
	Synthesis Setup Keys
	Synthesis Input Keys
	Synthesis Inputs
	Synthesis Outputs
	Synthesis Commands

	Place-and-Route
	P&R Setup Keys
	P&R Input Keys
	P&R Inputs
	P&R Outputs
	P&R Commands

	DRC
	DRC Setup Keys
	DRC Input Keys
	DRC Inputs
	DRC Outputs
	DRC Commands

	LVS
	LVS Setup Keys
	LVS Input Keys
	LVS Inputs
	LVS Outputs
	LVS Commands

	Simulation
	Simulation Setup Keys
	Simulation Input Keys
	Simulation Inputs
	Simulation Outputs
	Simulation Commands

	Power
	Power Setup Keys
	Simulation Input Keys
	Power Inputs
	Power Outputs
	Power Commands

	Formal Verification
	Formal Verification Setup Keys
	Formal Verification Input Keys
	Formal Verification Inputs
	Formal Verification Outputs
	Formal Verification Commands

	Static Timing Analysis
	STA Setup Keys
	STA Input Keys
	STA Inputs
	STA Outputs
	STA Commands

	Hammer Use
	Hammer IR and Meta Variables
	Hammer IR
	The hammer-config library
	Basics
	Overriding
	Meta actions
	Applying multiple meta actions
	Common meta actions
	Type Checking
	Key History
	Key Description Lookup
	Reference

	Hammer APIs
	Power Specification
	Timing Constraints
	Floorplan & Placement
	Bumps
	Pins
	Power Straps
	Special Cells
	Submission

	Flow Control
	Command-line Interface

	Extending Hammer with Hooks
	Hook Methods
	Including Hooks
	Technology, Tool, and User-Provided Hooks

	Hammer Buildfile
	Hierarchical Hammer Flow
	Hierarchical Hammer Config
	Flow Management and Actions
	Cadence Implementation
	Tips for Constraining Hierarchical Modules
	Special Notes & Limitations

	Hammer Examples
	Introduction with Sky130 and OpenROAD
	Instructions
	Next Steps
	Commercial flow
	Chipyard flow

	Hammer End-to-End Integration Tests
	Setup
	Overview
	Flow Selection
	Configs

	Run the Flow
	Flow Customization

	Custom Setups
	ASAP7 Install
	Sky130 Install

	Indices and tables

