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Hammer is a physical design framework that wraps around vendor specific technologies and tools to provide a single
API to create ASICs. Hammer allows for reusability in ASIC design while still providing the designers leeway to
make their own modifications.
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CHAPTER 1

Introduction to Hammer

Hammer (Higly Agile Masks Made Efforlessly from RTL) is a framework for building physical design generators for
digital VLSI flows. It is an evolving set of APIs that enable reuse in an effort to speed up VLSI flows, which have
traditionally been entirely rebuilt for different projects, technologies, and tools.

Hammer is able to generate scripts and collateral for a growing range of CAD tools while remaining technology-
agnostic using a well-defined set of common APIs. Tool- and technology-specific concerns live inside plugins, imple-
ment APIs, and provide a set of working default configurations.

The vision of Hammer is to reduce the cycle time on VLSI designs, enabling rapid RTL design space exploration
and allowing a designer to investigate the impact of various parameters like timing constraints and floorplans without
needing to worry about low-level details.

1.1 Hammer Basics

This documentation will give an overview of Hammer, its basic setup, its components, and its structure, as well as
some typical project setup.

1.1.1 Hammer Overview

Hammer has a set of actions and automatically takes the output of one action and converts it into the input for another.
For instance, a synthesis action will output a mapped verilog file which will then automatically by piped to the place-
and-route input when a place-and-route action is called.

A user’s Hammer environment is typically separated into four different components: core Hammer, one or more tool
plugins, a technology plugin, and a set of project-specific Hammer input files. Hammer is meant to expose a set of
generalized APIs that are then implemented by tool- and technology-specific plugins.

Hammer is included in a larger project called Chipyard which is the unified repo for an entire RTL, simulation,
emulation, and VLSI flow from Berkeley Architecture Research. There is an in-depth Hammer demo there, and it is a
great place to look at a typical Hammer setup.

3
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Main Hammer

Hammer provides the Python backend for a Hammer project and exposes a set of APIs that are typical of modern
VLSI flows. These APIs are then implemented by a tool plugin and a technology plugin of the designer’s choice. The
structure of Hammer is meant to enable re-use and portability between technologies.

Hammer takes its inputs and serializes its state in form of YML and JSON files. The designer sets a variety of settings
in the form of keys in different namespaces that are designated in Hammer to control its functionality. These keys
are contained in hammer/src/hammer-vlsi/defaults.yml. This file shows all of the keys that are a part of
main Hammer and provides sensible defaults that may be overridden or are set to null if they must be provided by the
designer.

Here is an example of a snippet that would be included in the user’s input configuration.

vlsi.core.technology: "asap7"
vlsi.inputs.supplies:

VDD: "0.7 V"
GND: "0 V"

This demonstrates two different namespaces, vlsi.core and vlsi.inputs, and then two different keys,
technology and supplies, which are set to the asap7 technology and 0.7 Volts supply voltage, respectively.

Further details about these keys and how they are manipulated is found in the Hammer IR and Meta Variables section.

Tech Plugins

A techonology plugin consists of two or more files: a *.tech.json and a defaults.yml.

The *.tech.json contains pointers to relevant PDK files and fundamental technology constants. These values are
not meant to be overriden, nor can they be for the time being.

defaults.yml sets default technology variables for Hammer to consume, which may be specific to this technology
or generic to all. These values may be overriden by design-specific configurations. An example of this is shown in
the open-source technology plugins in hammer/src/hammer-vlsi/technology/, such as asap7, and how
to setup a technology plugin is documented in more detail in the Technology Setup and Use section.

Note: Unless you are a UCB BAR or BWRC affiliate or have set up a 3-way technology NDA with us, we cannot
share pre-built technology plugin repositories.

Tool Plugins

A Hammer tool plugin actually implements tool-specific steps of the VLSI flow in Hammer in a template-like fashion.
The TCL commands input to the tool are created using technology and design settings provided by the designer.

There are currently three Hammer tool plugin repositories for commercial tools: hammer-cadence-plugins,
hammer-synopsys-plugins, and hammer-mentor-plugins. In them are tool plugin implementations
for actions including synthesis, place-and-route, DRC, LVS, and simulation. hammer-cadence-plugins
is publicly available; however, users must request access to hammer-synopsys-plugins and
hammer-mentor-plugins:

There are also a set of open-source tools (e.g. Yosys, OpenROAD, Magic, Netgen) provided in hammer/src/
hammer-vlsi/ under their respective actions.

Note: If you are not a UCB BAR or BWRC affiliate and have access to tools from a specific vendor, please email
hammer-plugins-access@lists.berkeley.edu with a request for which plugin(s) you would like access to. MAKE SURE

4 Chapter 1. Introduction to Hammer
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TO INCLUDE YOUR GITHUB ID IN YOUR EMAIL AND YOUR ASSOCIATION TO SHOW YOU HAVE LI-
CENSED ACCESS TO THOSE TOOLS. There will be no support guarantee for the plugin repositories, but users are
encouraged to file issues and contribute patches where needed.

These plugins implement many of the common steps of a modern physical design flow. However, a real chip flow
will require many custom settings and steps that may not be generalizable across technology nodes. Because of this,
Hammer has an “escape-hatch” mechanism, called a hook, that allows the designer to inject custom steps between the
default steps provided by the CAD tool plugin. Hooks are python methods that emit TCL code and may be inserted
before or after an existing step or replace the step entirely. This allows the designer to leverage the APIs built into
Hammer while easily inserting custom steps into the flow. Hooks are discussed in more detail in the “Example usage”
portion of the Hammer documentation.

Calling Hammer

To use Hammer on the command line, the designer will invoke the hammer-vlsi utility included in the core Hammer
repo. This is calling the __main__() method of the CLIDriver class. An example invocation is below:

hammer-vlsi -e env.yml -p config.yml --obj_dir build par

Using hooks requires the designer to extend the CLIDriver class. A good example exists in the Chipyard repository
(chipyard/vlsi/example-vlsi). This would change the invocation to something like the following:

example-vlsi -e env.yml -p config.yml --obj_dir build par

In both of these commands, an environment configuration is passed to Hammer using a -e flag, which in this case is
env.yml. env.yml contains pointers to the required tool licenses and environment variables. These environment
settings will not be propagated to the output configuration files after each action.

Any number of other YML or JSON files can then be passed in using the -p flag. In this case, there is only one,
config.yml, and it needs to set all the required keys for the step of the flow being run.

--obj_dir build designates what directory Hammer should use as a working directory. All default action run
directories and output files will be placed here.

Finally, par designates that this is a place-and-route action.

In this case, Hammer will write outputs to the path $PWD/build/par-rundir.

For the full list of Hammer command-line arguments, run hammer-vlsi –help or take a peek in the src/
hammer-vlsi/hammer_vlsi/cli_driver.py file.

1.1.2 Hammer Setup

Hammer has a few requirements and there are several environment variables to setup.

System Requirements

• Python 3.6+ required

• The ruamel.yaml package is recommended for key history (pip install ruamel.yaml)

• python3 in the $PATH

• hammer-shell in the $PATH

• hammer_config, python-jsonschema-objects, hammer-tech, hammer-vlsi in $PYTHONPATH

1.1. Hammer Basics 5
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• HAMMER_PYYAML_PATH set to pyyaml/lib3 or pyyaml in $PYTHONPATH

• HAMMER_HOME set to hammer repo root

• HAMMER_VLSI path set to $HAMMER_HOME/src.hammer-vlsi

Sourcing hammer/sourceme.sh will setup the environment described above.

To check your environment you may run the following:

git submodule update --init --recursive
export HAMMER_HOME=$PWD
source sourceme.sh
cd src/test
./unittests.sh
echo $?

If the last line above returns 0, then the environment is set up and ready to go.

Note: certain tools and technologies will have additional system requirements. For example, LVS with Netgen requires
Tcl/Tk 8.6, which is not installed for CentOS7/RHEL7 and below. Refer to each respective tool and technology’s
documentation for those requirements.

1.2 Technology Setup and Use

These guides will walk you through how to set up a technology to be used in Hammer.

You may use the included free ASAP7 PDK or the open-source Sky130 PDK plugins as reference when building your
own technology plugin.

1.2.1 Hammer Tech JSON

The tech.json for a given technology sets up some general information about the install of the PDK, sets up DRC
rule decks, sets up pointers to PDK files, and supplies technology stackup information. For a full schema that the tech
JSON supports, please see src/hammer-tech/schema.json.

Technology Install

The user may supply the PDK to Hammer as an already extracted directory and/or as a tarball that Hammer can
automatically extract. Setting technology.TECH_NAME. install_dir and/or tarball_dir (key is setup
in the defaults.yml) will fill in as the path prefix for paths supplied to PDK files in the rest of the tech.json.
install-example shows an example of the installs and tarballs from the ASAP7 plugin.

"name": "ASAP7 Library",
"grid_unit": "0.001",
"time_unit": "1 ps",
"installs": [

{
"path": "$PDK",
"base var": "technology.asap7.pdk_install_dir"

},
{
"path": "$STDCELLS",
"base var": "technology.asap7.stdcell_install_dir"

},

(continues on next page)
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(continued from previous page)

{
"path": "tech-asap7-cache",
"base var": ""

}
],
"tarballs": [

{
"path": "ASAP7_PDK_CalibreDeck.tar",
"homepage": "http://asap.asu.edu/asap/",
"base var": "technology.asap7.tarball_dir"

}
],

Notice how in the installs, there are two directories holding the PDK files and standard cell files. The
tech-asap7-cache with an empty base var denotes files that exist in the tech cache, which are placed there
by a post-installation PDK hacking script (see ASAP7’s post_install_script method). Finally, the encrypted
Calibre decks are provided in a tarball.

DRC/LVS Deck Setup

As many DRC & LVS decks for as many tools can be specified in the drc decks and lvs decks keys.
Additional DRC/LVS commands can be appended to the generated run files by specifying raw text in the
additional_drc_text and additional_lvs_text keys. deck-example shows an example of an LVS
deck from the ASAP7 plugin.

"lvs decks": [
{
"tool name": "calibre",
"deck name": "all_lvs",
"path": "ASAP7_PDK_CalibreDeck.tar/calibredecks_r1p7/calibre/ruledirs/lvs/

→˓lvsRules_calibre_asap7.rul"
}

],
"additional_lvs_text": "LVS SPICE EXCLUDE CELL \*SRAM*RW*\"\nLVS BOX \"SRAM*RW*\
→˓"\nLVS FILTER \*SRAM*RW*\" OPEN",

The file pointers, in this case, use the tarball prefix because Hammer will be extracting the rule deck directly from the
ASAP7 tarball. The additional text is needed to tell Calibre that the dummy SRAM cells need to be filtered from the
source netlist and boxed and filtered from the layout.

Library Setup

The libraries key also must be setup in the JSON plugin. This will tell Hammer where to find all of the relevant
files for standard cells and other blocks for the VLSI flow. library-example shows an example of the start of the
library setup and one entry from the ASAP7 plugin.

"libraries": [
{
"lef file": "$STDCELLS/techlef_misc/asap7_tech_4x_201209.lef",
"provides": [

{
"lib_type": "technology"

}

(continues on next page)
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(continued from previous page)

]
},
{
"nldm liberty file": "$STDCELLS/LIB/NLDM/asap7sc7p5t_SIMPLE_RVT_TT_nldm_201020.

→˓lib.gz",
"verilog sim": "$STDCELLS/Verilog/asap7sc7p5t_SIMPLE_RVT_TT_201020.v",
"lef file": "$STDCELLS/LEF/scaled/asap7sc7p5t_27_R_4x_201211.lef",
"spice file": "$STDCELLS/CDL/LVS/asap7sc7p5t_27_R.cdl",
"gds file": "$STDCELLS/GDS/asap7sc7p5t_27_R_201211.gds",
"qrc techfile": "$STDCELLS/qrc/qrcTechFile_typ03_scaled4xV06",
"spice model file": {

"path": "$PDK/models/hspice/7nm_TT.pm"
},
"corner": {

"nmos": "typical",
"pmos": "typical",
"temperature": "25 C"

},
"supplies": {

"VDD": "0.70 V",
"GND": "0 V"

},
"provides": [

{
"lib_type": "stdcell",
"vt": "RVT"

}
]

},

The file pointers, in this case, use the $PDK and $STDCELLS prefix as defined in the installs. The corner key
tells Hammer what process and temperature corner that these files correspond to. The supplies key tells Hammer
what the nominal supply for these cells are. The provides key has several sub-keys that tell Hammer what kind of
library this is (examples include stdcell, fiducials, io pad cells, bump, and level shifters) and
the threshold voltage flavor of the cells, if applicable. Adding the tech LEF for the technology with the lib_type
set as technology is necessary for place and route.

TODO: ADD INFO ABOUT LIBRARY FILTERS

Stackup

The stackups sets up the important metal layer information for Hammer to use. stackups-example shows an
example of one metal layer in the metals list from the ASAP7 example tech plugin.

{"name": "M3", "index": 3, "direction": "vertical", "min_width": 0.072, "pitch": 0.
→˓144, "offset": 0.0, "power_strap_widths_and_spacings": [{"width_at_least": 0.0,
→˓"min_spacing": 0.072}], "power_strap_width_table": [0.072, 0.36, 0.648, 0.936, 1.
→˓224, 1.512]}

All this information is typically taken from the tech LEF and can be automatically filled in with a script.
The metal layer name and layer number is specified. direction specifies the preferred routing direction
for the layer. min_width and pitch specify the minimum width wire and the track pitch, respectively.
power_strap_widths_and_spacings is a list of pairs that specify design rules relating to the widths of wires
and minimum required spacing between them. This information is used by Hammer when drawing power straps to
make sure it is conforming to some basic design rules.

8 Chapter 1. Introduction to Hammer
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Sites

The sites field specifies the unit standard cell size of the technology for Hammer.

"sites": [
{"name": "asap7sc7p5t", "x": 0.216, "y": 1.08}

]

This is an example from the ASAP7 tech plugin in which the name parameter specifies the core site name used in the
tech LEF, and the x and y parameters specify the width and height of the unit standard cell size, respectively.

Special Cells

The special cells field specifies a set of cells in the technology that have special functions.
special-cells-example shows a subset of the ASAP7 tech plugin for 2 types of cells: tapcell and
stdfiller.

"special cells": [
{"cell_type": "tapcell", "name": ["TAPCELL_ASAP7_75t_L"]},
{"cell_type": "stdfiller", "name": ["FILLER_ASAP7_75t_R", "FILLER_ASAP7_75t_L",

→˓"FILLER_ASAP7_75t_SL", "FILLER_ASAP7_75t_SRAM", "FILLERxp5_ASAP7_75t_R", "FILLERxp5_
→˓ASAP7_75t_L", "FILLERxp5_ASAP7_75t_SL", "FILLERxp5_ASAP7_75t_SRAM"]},

There are 8 cell_type s supported: tiehicell, tielocell, tiehilocell, endcap, iofiller,
stdfiller, decap, and tapcell. Depending on the tech/tool, some of these cell types can only have 1 cell
in the name list.

There is an optional size list. For each element in its corresponding name list, a size (type: str) can be given. An
example of how this is used is for decap cells, where each listed cell has a typical capacitance, which a place and
route tool can then use to place decaps to hit a target total decapacitance value. After characterizing the ASAP7 decaps
using Voltus, the nominal capacitance is filled into the size list:

{"cell_type": "decap", "name": ["DECAPx1_ASAP7_75t_R", "DECAPx1_ASAP7_75t_L",
→˓"DECAPx1_ASAP7_75t_SL", "DECAPx1_ASAP7_75t_SRAM", "DECAPx2_ASAP7_75t_R", "DECAPx2_
→˓ASAP7_75t_L", "DECAPx2_ASAP7_75t_SL", "DECAPx2_ASAP7_75t_SRAM", "DECAPx2b_ASAP7_75t_
→˓R", "DECAPx2b_ASAP7_75t_L", "DECAPx2b_ASAP7_75t_SL", "DECAPx2b_ASAP7_75t_SRAM",
→˓"DECAPx4_ASAP7_75t_R", "DECAPx4_ASAP7_75t_L", "DECAPx4_ASAP7_75t_SL", "DECAPx4_
→˓ASAP7_75t_SRAM", "DECAPx6_ASAP7_75t_R", "DECAPx6_ASAP7_75t_L", "DECAPx6_ASAP7_75t_SL
→˓", "DECAPx6_ASAP7_75t_SRAM", "DECAPx10_ASAP7_75t_R", "DECAPx10_ASAP7_75t_L",
→˓"DECAPx10_ASAP7_75t_SL", "DECAPx10_ASAP7_75t_SRAM"], "size": ["0.39637 fF", "0.
→˓402151 fF", "0.406615 fF", "0.377040 fF","0.792751 fF", "0.804301 fF", "0.813231 fF
→˓", "0.74080 fF", "0.792761 fF", "0.804309 fF", "0.813238 fF","0.75409 fF", "1.5855
→˓fF", "1.6086 fF", "1.62646 fF", "1.50861 fF", "2.37825 fF", "2.4129 fF", "2.43969 fF
→˓", "2.26224 fF", "3.96376 fF", "4.02151 fF", "4.06615 fF", "3.7704 fF"]},

Don’t Use, Physical-Only Cells

The dont use list is used to denote cells that should be excluded due to things like bad timing models or layout.
The physical only cells list is used to denote cells that contain only physical geometry, which means that
they should be excluded from netlisting for simulation and LVS. Examples from the ASAP7 plugin are below:

"dont use list": [
"ICGx*DC*",
"AND4x1*",

(continues on next page)
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(continued from previous page)

"SDFLx2*",
"AO21x1*",
"XOR2x2*",
"OAI31xp33*",
"OAI221xp5*",
"SDFLx3*",
"SDFLx1*",
"AOI211xp5*",
"OAI322xp33*",
"OR2x6*",
"A2O1A1O1Ixp25*",
"XNOR2x1*",
"OAI32xp33*",
"FAx1*",
"OAI21x1*",
"OAI31xp67*",
"OAI33xp33*",
"AO21x2*",
"AOI32xp33*"

],
"physical only cells list": [

"TAPCELL_ASAP7_75t_R", "TAPCELL_ASAP7_75t_L", "TAPCELL_ASAP7_75t_SL", "TAPCELL_
→˓ASAP7_75t_SRAM",
"TAPCELL_WITH_FILLER_ASAP7_75t_R", "TAPCELL_WITH_FILLER_ASAP7_75t_L", "TAPCELL_WITH_

→˓FILLER_ASAP7_75t_SL", "TAPCELL_WITH_FILLER_ASAP7_75t_SRAM",
"FILLER_ASAP7_75t_R", "FILLER_ASAP7_75t_L", "FILLER_ASAP7_75t_SL", "FILLER_ASAP7_

→˓75t_SRAM",
"FILLERxp5_ASAP7_75t_R", "FILLERxp5_ASAP7_75t_L", "FILLERxp5_ASAP7_75t_SL",

→˓"FILLERxp5_ASAP7_75t_SRAM"
],

1.2.2 Hammer Tech defaults.yml

The defaults.yml for a technology specifies some technology-specific Hammer IR that should be left as default
unless you desire to override them. Some of the them work directly with the keys in the tech.json.

Most of the keys in the defaults.yml are a part of the vlsi and technology namespaces. An example of the
setup of the defaults.yml is located in hammer/src/hammer-vlsi/technology/asap7/defaults.
yml and certain important keys should be common to most technology plugins:

• vlsi.core.node defines the node that the place-and-route tool expects. It affects what kind of licenses are
needed.

• vlsi.inputs should at least have the nominal supplies and a typical pair of characterized setup & hold
corners.

• vlsi.technology needs to specify a placement_site as defined in the technology LEF, a
bump_block_cut_layer to set blockages under bumps, and optional tap_cell_interval and
tap_cell_offset for placing well taps.

• technology.core needs to specify the stackup to use, which layer the standard cell power rails are on, and
a reference cell to draw the lowest layer power rails over.

Tool environment variables (commonly needed for DRC/LVS decks) and other necessary default options should be set
in this file. As always, they can be overriden by other snippets of Hammer IR.
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The data types for all keys in defaults.yml can be found in defaults_types.yml. When adding or over-
riding to defaults.yml, make sure that said data types are updated accordingly to prevent problems with the type
checker.

1.3 Hammer CAD Tool Plugins

This guide discusses the use and creation of CAD tool plugins in Hammer. A CAD tool plugin provides the actual
implementation of Hammer APIs and outputs the TCL necessary to control its corresponding CAD tool.

1.3.1 Hammer CAD Tools

Hammer currently has open-source CAD tool plugins in the hammer/src/hammer-vlsi/ folder and three repos
for CAD tools from commercial vendors: hammer-cadence-plugins, hammer-synopsys-plugins, and
hammer-mentor-plugins. hammer-cadence-plugins is a public repo but the others are private since they
contain tool-specific commands not yet cleared for public release. Access to them may be granted for Hammer users
who already have licenses for those tools. See the note about plugins access for instructions for how to request access.

The structure of each repository is as follows:

• ACTION

– TOOL_NAME

* __init__.py contains the methods needed to implement the tool

* defaults.yml contains the default Hammer IR needed by the tool

ACTION is the Hammer action name (e.g. par, synthesis, drc, etc.). TOOL_NAME is the name of
the tool, which is referenced in your configuration. For example, having vlsi.core.par_tool_path:
par_tool_foo in your configuration would expect a TOOL_NAME of par_tool_foo.

1.3.2 Setting up a Hammer CAD Tool Plugin

This guide will discuss what a Hammer user may do if they want to implement their own CAD tool plugin or extend
the current CAD tool plugins. There are some basic mock-up examples of how this can be done in the par and
synthesis directories inside hammer/src/hammer-vlsi/.

Tool Class

Writing a tool plugin starts with writing the tool class. Hammer already provides a set of classes and mixins for a
new tool to extend. For example, the Hammer Innovus plugin inherits from HammerPlaceAndRouteTool and
CadenceTool.

Steps

Each tool implements a steps method. For instance, a portion of the steps method for a place-and-route tool may look
like:

@property
def steps(self) -> List[HammerToolStep]:

steps = [
self.init_design,

(continues on next page)
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(continued from previous page)

self.floorplan_design,
self.route_design

]
return self.make_steps_from_methods(steps)

Each of the steps are their own methods in the class that will write TCL that will execute with the tool.

Getting Settings

Hammer provides the method get_setting("KEY_NAME") for the tool to actually grab the settings from the
user’s input YML or JSON files. One example would be self.get_setting("par.blockage_spacing")
so that Hammer can specify to the desired P&R tool what spacing to use around place and route blockages.

Writing TCL

Hammer provides two main methods for writing TCL to a file: append and verbose_append. Both do similar
things but verbose_append will emit additional TCL code to print the command to the terminal upon execution.

Executing the Tool

When all the desired TCL has been written by various step methods, it is time to execute the tool itself. Hammer
provides the method run_executable(args, cwd=self.run_dir) to do so. args is a Python list of flags
to be run with the tool executable. cwd=self.run_dir sets the “current working directory” and allows the plugin
to specify in what directory to execute the command.

Tool Outputs

After execution, the Hammer driver will emit a copy of the Hammer IR database in JSON format to the run directory as
well as specific new fields created by the activity. The name of the output JSON files will be related to the activity type
(e.g. par-output.json and par-output-full.json for the par activity). The -full verison contains
the entire Hammer IR database, while the other version contains only the output entries created by this activity. The
individual fields are created when the export_config_outputs method is called. Each implementation of this
tool must override this method with a new one that calls its super method and appends any additional output fields
to the output dictionary, as necessary.

1.4 Hammer Flow Steps

This documentation will walk through the currently supported steps of the Hammer flow: synthesis, place-and-route,
DRC, LVS, and simulation. Two other action types are supported, but not discussed: PCB collateral generation, and
SRAM generation.

1.4.1 Hammer Actions

Hammer has a set of actions including synthesis, place-and-route, DRC, LVS, simulation, SRAM generation, and
PCB collateral generation. All of the Hammer actions and their associated key inputs can be found in hammer/src/
hammer-vlsi/defaults.yml and are documented in detail in each action’s documentation.
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Hammer will automatically pass the output files of one action to subsequent actions if those actions require the files.
Hammer does this with conversion steps (e.g. syn-to-par for synthesis outputs to place-and-route inputs), which
map the outputs from one tool into the inputs of another (e.g. synthesis.outputs.output_files maps to
par.outputs.input_files). The Hammer make infrastructure builds these conversion rules automatically, so
using the make infrastructure is recommended. See the Hammer Buildfile section for more details.

Hammer actions are implemented using tools. See the Hammer CAD Tools section for details about how these tools
are set up.

1.4.2 Synthesis

Hammer supports synthesizing Verilog-based RTL designs to gate-level netlists. This action requires a tool plugin to
implement HammerSynthesisTool.

Synthesis Setup Keys

• Namespace: vlsi.core

– synthesis_tool_path

* Set to the directory containing the tool plugin directory for the DRC tool, typically /path/
to/tool_plugin/synthesis. This will be the parent directory of the directory containing
__init__.py and defaults.yml.

– synthesis_tool

* Actual name of the synthesis tool that is setup in the directory synthesis_tool_path, e.g.
genus

Synthesis Input Keys

• Namespace: synthesis

– inputs.input_files ([])

* A list of file paths to source files to be passed to the synthesis tool. The paths may be relative to the
directory in which hammer-vlsi is called.

– inputs.top_module (str)

* Name of the top level verilog module of the design.

– clock_gating_mode (str)

* auto: turn on automatic clock gating inference in CAD tools

* empty: do not do any clock gating

Synthesis Inputs

There are no prerequisites to running synthesis other than setting the keys that are described above.
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Synthesis Outputs

• Mapped verilog file: obj_dir/syn-rundir/{TOP_MODULE}.mapped.v

• Mapped design SDF: obj_dir/syn-rundir/{TOP_MODULE}.mapped.sdf

• Synthesis output Hammer IR is contained in obj_dir/syn-rundir/syn-output.json

• Synthesis reports for gates, area, and timing are output in obj_dir/syn-rundir/reports

The synthesis output Hammer IR is converted to inputs for the P&R tool and the simulation tool by the Hammer
syn-to-par and syn-to-sim commands, respectively.

Synthesis Commands

• Synthesis Command

– hammer-vlsi -e env.yml -p config.yml --obj_dir OBJ_DIR syn

• Synthesis to Place-and-route

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.
json --obj_dir OBJ_DIR syn-to-par

• Synthesis to Simulation

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.
json --obj_dir OBJ_DIR syn-to-sim

1.4.3 Place-and-Route

Hammer has an action for placing and routing a synthesized design. This action requires a tool plugin to implement
HammerPlaceAndRouteTool.

P&R Setup Keys

• Namespace: vlsi.core

– par_tool_path

* Set to the directory containing the tool plugin directory for the place-and-route tool, typically /path/
to/tool_plugin/par. This will be the parent directory of the directory containing __init__.
py and defaults.yml.

– par_tool

* Actual name of the P&R tool that is setup in the directory, par_tool_path, e.g. innovus

P&R Input Keys

• Namespace: vlsi

– These are built-in Hammer APIs covered in Hammer APIs

• Namespace: par

– inputs.input_files ([])

* List of paths to post-synthesis netlists. Auto-populated after syn-to-par.
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– inputs.top_module (str)

* Name of top RTL module to P&R. Auto-populated after syn-to-par.

– inputs.post_synth_sdc (str)

* Post-synthesis generated SDC. Auto-populated after syn-to-par.

– inputs.gds_map_mode (str)

* Specify which GDS layermap file to use. auto uses the technology-supplied file, whereas manual
requires a file to specified via inputs.gds_map_file.

– inputs.gds_merge (bool)

* True tells the P&R tool to merge all library & macro GDS before streamout. Otherwise, only refer-
ences will exist and merging needs to be done later, by a tool such as Calibre, gdstk, or gdspy.

– inputs.physical_only_cells_mode (str)

* Specifies which set of cells to exclude from SPICE netlist because they have no logical function.
auto uses the technology-supplied list, whereas manual and append overrides and appends to the
supplied list, respectively.

– submit (dict)

* Can override global settings for submitting jobs to a workload management platform.

– power_straps_mode (str)

* Power straps configuration. generate enables Hammer’s power straps API, whereas manual re-
quires a TCL script in power_straps_script_contents.

– blockage_spacing (Decimal)

* Global obstruction around every hierarchical sub-block and hard macro

– generate_power_straps_options (dict)

* If generate_power_straps_method is by_tracks, this struct specifies all the options for
the power straps API. See Hammer APIs for more detail.

P&R Inputs

There are no other prerequisites to running place & route other than setting the keys described above.

P&R Outputs

• Hierarchical (e.g. Cadence ILMs) and between-step snapshot databases in OBJ_DIR/par-rundir

• GDSII file with final design: {OBJ_DIR}/par-rundir/{TOP_MODULE}.gds

• Verilog gate-level netlist: {OBJ_DIR}/par-rundir/{TOP_MODULE}.lvs.v

• SDF file for post-par simulation: {OBJ_DIR}/par-rundir/{TOP_MODULE}.sdf

• Timing reports: {OBJ_DIR}/par-rundir/timingReports

• A script to open the final chip: {OBJ_DIR}/par-rundir/generated_scripts/open_chip

P&R output Hammer IR {OBJ_DIR}/par-rundir/par-output.json is converted to inputs for the DRC,
LVS, and simulation tools by the par-to-drc, par-to-lvs, and par-to-sim actions, respectively.
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P&R Commands

• P&R Command (after syn-to-par is run)

– hammer-vlsi -e env.yml -p {OBJ_DIR}/par-input.json --obj_dir OBJ_DIR
par

• P&R to DRC

– hammer-vlsi -e env.yml -p config.yml -p {OBJ_DIR}/par-rundir/
par-output.json --obj_dir OBJ_DIR par-to-drc

• P&R to LVS

– hammer-vlsi -e env.yml -p config.yml -p {OBJ_DIR}/par-rundir/
par-output.json --obj_dir OBJ_DIR par-to-lvs

• P&R to Simulation

– hammer-vlsi -e env.yml -p config.yml -p {OBJ_DIR}/par-rundir/
par-output.json --obj_dir OBJ_DIR par-to-sim

1.4.4 DRC

Hammer has an action for running design rules check (DRC) on a post-place-and-route GDS. This action requires a
tool plugin to implement HammerDRCTool.

DRC Setup Keys

• Namespace: vlsi.core

– drc_tool_path

* Set to the directory containing the tool plugin directory for the DRC tool, typically /path/to/
tool_plugin/drc. This will be the parent directory of the directory containing __init__.py
and defaults.yml.

– drc_tool

* Actual name of the DRC tool that is setup in the directory, drc_tool_path, e.g. calibre

DRC Input Keys

• Namespace: drc

– inputs.top_module (str)

* Name of top RTL module to run DRC on. Auto-populated after par-to-drc.

– inputs.layout_file (str)

* GDSII file from place-and-route. Auto-populated after par-to-drc.

– inputs.additional_drc_text_mode (str)

* Chooses what custom DRC commands to add to the run file. auto selects the one provided in the
Hammer Tech JSON.

– inputs.drc_rules_to_run ([str])
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* This selects a subset of the rules given in the technology’s Design Rule Manual (DRM). The format
of these rules will be technology- and tool-specific.

– submit (dict)

* Can override global settings for submitting jobs to a workload management platform.

DRC Inputs

There are no other prerequisites to running DRC other than setting the keys described above.

DRC Outputs

• DRC results report and database in {OBJ_DIR}/drc-rundir

• A run file: {OBJ_DIR}/drc-rundir/drc_run_file

• A script to interactively view the DRC results: {OBJ_DIR}/drc-rundir/generated_scripts/
view_drc

DRC Commands

• DRC Command (after par-to-drc is run)

– hammer-vlsi -e env.yml -p {OBJ_DIR}/drc-input.json --obj_dir OBJ_DIR
drc

1.4.5 LVS

Hammer has an action for running layout-versus-schematic (LVS) on a post-place-and-route GDS and gate-levl netlist.
This action requires a tool plugin to implement HammerLVSTool.

LVS Setup Keys

• Namespace: vlsi.core

– lvs_tool_path

* Set to the directory containing the tool plugin directory for the LVS tool, typically /path/to/
tool_plugin/lvs. This will be the parent directory of the directory containing __init__.py
and defaults.yml.

– lvs_tool

* Actual name of the lvs tool that is setup in the directory, lvs_tool_path, e.g. calibre

LVS Input Keys

• Namespace: lvs

– inputs.top_module (str)

* Name of top RTL module to run LVS on. Auto-populated after par-to-lvs.

– inputs.layout_file (str)
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* GDSII file from P&R. Auto-populated after par-to-lvs.

– inputs.schematic_files ([str])

* Netlists from P&R’d design and libraries. Auto-populated after par-to-lvs.

– inputs.additional_lvs_text_mode (str)

* Chooses what custom LVS commands to add to the run file. auto selects the one provided in the
Hammer Tech JSON.

– submit (dict)

* Can override global settings for submitting jobs to a workload management platform.

LVS Inputs

There are no other prerequisites to running LVS other than setting the keys described above.

LVS Outputs

• LVS results report and database in {OBJ_DIR}/lvs-rundir

• A run file: {OBJ_DIR}/lvs-rundir/lvs_run_file

• A script to interactively view the LVS results: {OBJ_DIR}/lvs-rundir/generated_scripts/
view_lvs

LVS Commands

• LVS Command (after par-to-lvs is run)

– hammer-vlsi -e env.yml -p {OBJ_DIR}/lvs-input.json --obj_dir OBJ_DIR
lvs

1.4.6 Simulation

Hammer supports RTL, post-synthesis, and post-P&R simulation. It provides a simple API to add flags to the simulator
call and automatically passes in collateral to the simulation tool from the synthesis and place-and-route outputs. This
action requires a tool plugin to implement HammerSimTool.

Simulation Setup Keys

• Namespace: vlsi.core

– sim_tool_path

* Set to the directory containing the tool plugin directory for the sim tool, typically /path/to/
tool_plugin/sim. This will be the parent directory of the directory containing __init__.
py and defaults.yml.

– sim_tool

* Actual name of the simulation tool that is setup in the directory sim_tool_path, e.g. vcs
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Simulation Input Keys

• Namespace: sim.inputs

– input_files ([])

* A list of file paths to source files (verilog sources, testharness/testbench, etc.) to be passed to the
synthesis tool (both verilog and any other source files needed). The paths may be relative to the
directory in which hammer-vlsi is called.

– top_module (str)

* Name of the top level module of the design.

– options ([str])

* Any options that are passed into this key will appear as plain text flags in the simulator call.

– defines ([str])

* Specifies define options that are passed to the simulator. e.g. when using VCS, this will be added as
+define+{DEFINE}.

– compiler_cc_opts ([str])

* Specifies C compiler options when generating the simulation executable. e.g. when using VCS, each
compiler_cc_opt will be added as -CFLAGS {compiler_cc_opt}.

– compiler_ld_opts ([str])

* Specifies C linker options when generating the simulation executable. e.g. when using VCS, each
compiler_ld_opt will be added as -LDFLAGS {compiler_ld_opt}.

– timescale (str)

* Plain string that specifies the simulation timescale. e.g. when using VCS, sim.inputs.
timescale: '1ns/10ps' would be passed as -timescale=1ns/10ps

– benchmarks ([str])

* A list of benchmark binaries that will be run with the simulator to test the design if the testbench
requires it. For example, this may be RISC-V binaries. If unspecified or left empty, the simulation
will execute as normal.

– parallel_runs (int)

* Maximum number of simulations to run in parallel. -1 denotes all in parallel. 0 or 1 denotes serial
execution.

– tb_name (str)

* The name of the testbench/test driver in the simulation.

– tb_dut (str)

* Hierarchical path to the to top level instance of the “dut” from the testbench.

– level ("rtl" or "gl")

* This defines whether the simulation being run is at the RTL level or at the gate level.

– all_regs (str)

* Path to a list of all registers in the design, typically generated from the synthesis or P&R tool. This is
used in gate level simulation to initialize register values.

– seq_cells (str)
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* Path to a list of all sequential standard cells in the design, typically generated from the synthesis or
P&R tool. This is used in gate level simulation.

– sdf_file (str)

* Path to Standard Delay Format file used in timing annotated simulations.

– gl_register_force_value (0 or 1)

* Defines what value all registers will be initialized to for gate level simulations.

– timing_annotated (false or true)

* Setting to false means that the simulation will be entirely functional. Setting to true means that the
simulation will be time annotated based on synthesis or P&R results.

– saif.mode ("time", "trigger", "trigger_raw", or "full")

* "time": pair with saif.mode.start_time and saif.mode.end_time (TimeValue) to
dump between 2 timestamps

* "trigger": inserts a trigger into the simulator run script

* "trigger_raw": inserts a given start/end trigger tcl script into the simulator run script. Specify
scripts with saif.mode.start_trigger_raw and saif.mode.end_trigger_raw (str)

* "full": dump the full simulation

– execution_flags ([str])

* Each string in this list will be passed as an option when actually executing the simulation executable
generated from the previous arguments.

* Can also use execution_flags_prepend and execution_flags_append for additional
execution flags

– execute_sim (true or false)

* Determines whether or not the simulation executable that is generated with the above inputs with the
given flags or if the executable will just be generated.

Simulation Inputs

There are no prerequisites to running an RTL simulation other than setting the keys that are described above. Running
the syn-to-sim action after running synthesis will automatically generate the Hammer IR required to pipe the
synthesis outputs to the Hammer simulation tool, and should be included in the Hammer call, as demonstrated in the
“Post-Synthesis Gate Level Sim” command below. The same goes for post-place-and-route simulations. The required
files for these simulations (SDF, SPEF, etc.) are generated and piped to the simulation tool in the corresponding
action’s outputs.

The Hammer simulation tool will initialize register values in the simulation, as that is of particular need when simu-
lating Chisel-based designs, to deal with issues around x-pessimism.

Simulation Outputs

The simulation tool is able to output waveforms for the simulation. All of the relevant outputs of the simulation can
be found in OBJ_DIR/sim-rundir/.
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Simulation Commands

• RTL Simulation Command

– hammer-vlsi -e env.yml -p config.yml --obj_dir OBJ_DIR sim

• Synthesis to Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.
json -o OBJ_DIR/syn-to-sim_input.json --obj_dir OBJ_DIR syn-to-sim

• Post-Synthesis Gate Level Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-sim_input.json
--obj_dir OBJ_DIR sim

• P&R to Simulation

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/par-output.
json -o OBJ_DIR/par-to-sim_input.json --obj_dir OBJ_DIR par-to-sim

• Post-P&R Gate Level Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-sim_input.json
--obj_dir OBJ_DIR sim

1.4.7 Power

Hammer supports RTL, post-synthesis, and post-P&R power analysis. It provides a simple API to add flags to the
power tool call and automatically passes in collateral to the power tool from the other tool steps. This action requires
a tool plugin to implement HammerPowerTool.

Power Setup Keys

• Namespace: vlsi.core

– power_tool_path

* Set to the directory containing the tool plugin directory for the power tool, typically /path/
to/tool_plugin/power. This will be the parent directory of the directory containing
__init__.py and defaults.yml.

– power_tool

* Actual name of the power tool that is setup in the directory power_tool_path, e.g. voltus

Simulation Input Keys

• Namespace: power.inputs

– database (str)

* Path to the place and route database of the design to be analyzed. This path may be relative to the
directory in which hammer-vlsi is called.

– tb_name (str)

* The name of the testbench/test driver in the simulation.

– tb_dut (str)
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* Hierarchical path to the to top level instance of the “dut” from the testbench.

– spefs ([str])

* List of paths to all spef (parasitic extraction) files for the design. This list may include a spef file per
MMMC corner. Paths may be relative to the directory in which hammer-vlsi is called.

– waveforms ([str])

* List of paths to waveforms to be used for dynamic power analysis. Paths may be relative to the
directory in which hammer-vlsi is called.

– start_times ([TimeValue])

* List of analysis start times corresponding to each of the waveforms used for dynamic power analy-
sis.

– end_times ([TimeValue])

* List of analysis end times corresponding to each of the waveforms used for dynamic power analysis.

– saifs ([str])

* List of paths to SAIF (activity files) for dynamic power analysis. Generally generated by a gate-level
simulation. Paths may be relative to the directory in which hammer-vlsi is called.

– extra_corners_only (bool)

* If overridden to true, the power tool will report for only the extra MMMC corners, saving runtime.
The typical use case is to only report power and rail analysis for a typical/nominal corner.

– input_files ([str])

* A list of the paths to the design inputs files (HDL or netlist) for power analysis.

– sdc (str)

* Path to SDC input file.

– report_configs ([dict])

* List of report configs that specify PowerReport structs.

– level (FlowLevel)

* Power analysis mode for different levels of the VLSI flow. The available options are rtl, syn,
and par.

– top_module (str)

* Top RTL module for power analysis.

Power Inputs

Hammer’s power analysis can be run with an RTL input, or post-synthesis or post-place-and-route (and with
corresponding simulations). Auto-translation of of Hammer IR to the power tool from those outputs are ac-
complished using the sim-rtl-to-power, syn-to-power, sim-syn-to-power, par-to-power, and
sim-par-to-power actions, as demonstrated below. The required files for power analysis (database, SAIF, SPEF,
etc.) are generated and piped to the power tool from the pre-requisite action’s outputs.

Power Outputs

The power tool outputs static and active power estimations into the OBJ_DIR/power-rundir/ directory. Exact
report format may vary by tool used.
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Power Commands

RTL Power Analysis:

• RTL Sim

– hammer-vlsi -e env.yml -p config.yml --obj_dir OBJ_DIR sim-rtl

• Simulation to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/sim-rundir/
sim-rtl-output.json -o OBJ_DIR/sim-rtl-to-power_input.json --obj_dir
OBJ_DIR sim-rtl-to-power

• Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/sim-rtl-to-power_input.
json --obj_dir OBJ_DIR power-rtl

Post-synthesis Power Analysis:

• Syn to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.
json -o OBJ_DIR/syn-to-power_input.json --obj_dir OBJ_DIR syn-to-power

• Syn to Simulation

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/syn-output.
json -o OBJ_DIR/syn-to-sim_input.json --obj_dir OBJ_DIR syn-to-sim

• Post-Syn Gate Level Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-sim_input.json
--obj_dir OBJ_DIR sim-syn

• Simulation to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/sim-rundir/
sim-syn-output.json -o OBJ_DIR/sim-syn-to-power_input.json --obj_dir
OBJ_DIR sim-syn-to-power

• Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-power_input.
json -p OBJ_DIR/sim-syn-to-power_input.json --obj_dir OBJ_DIR
power-syn

Post-P&R Power Analysis:

• P&R to Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/par-output.
json -o OBJ_DIR/par-to-power_input.json --obj_dir OBJ_DIR par-to-power

• P&R to Simulation

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/par-output.
json -o OBJ_DIR/par-to-sim_input.json --obj_dir OBJ_DIR par-to-sim

• Post-P&R Gate Level Sim

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-sim_input.json
--obj_dir OBJ_DIR sim-par

• Simulation to Power
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– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/sim-rundir/
sim-par-output.json -o OBJ_DIR/sim-par-to-power_input.json --obj_dir
OBJ_DIR sim-par-to-power

• Power

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-power_input.
json -p OBJ_DIR/sim-par-to-power_input.json --obj_dir OBJ_DIR
power-par

1.4.8 Formal Verification

Hammer supports post-synthesis and post-P&R formal verification. It provides a simple API to provide a set of
reference and implementation inputs (e.g. Verilog netlists) to perform formal verification checks such as logical
equivalence checking (LEC). This action requires a tool plugin to implement HammerFormalTool.

Formal Verification Setup Keys

• Namespace: vlsi.core

– formal_tool_path

* Set to the directory containing the tool plugin directory for the formal tool, typically /path/
to/tool_plugin/formal. This will be the parent directory of the directory containing
__init__.py and defaults.yml.

– formal_tool

* Actual name of the formal verification tool that is setup in the directory formal_tool_path,
e.g. conformal

Formal Verification Input Keys

• Namespace: formal.inputs

– check (str)

* Name of the formal verification check that is to be performed. Support varies based on the specific
tool plugin. Potential check types/algorithms could be “lec”, “power”, “constraint”, “cdc”, “property”,
“eco”, and more. At the moment, only “lec” is supported.

– input_files ([])

* A list of file paths to implementation source files (verilog, vhdl, spice, liberty, etc.) to be passed to the
formal verification tool. For a LEC tool, this would be the sources for the “revised” design. The paths
may be relative to the directory in which hammer-vlsi is called.

– reference_files ([])

* A list of file paths to reference source files (verilog, vhdl, spice, liberty, etc.) to be passed to the formal
verification tool. For a LEC tool, this would be the sources for the “golden” design. The paths may
be relative to the directory in which hammer-vlsi is called.

– top_module (str)

* Name of the top level module of the design to be verified.
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Formal Verification Inputs

Running the syn-to-formal action after running synthesis will automatically generate the Hammer IR required
to pipe the synthesis outputs to the Hammer formal verification tool, and should be included in the Hammer call, as
demonstrated in the “Post-Synthesis Formal Verification” command below. The same goes for post-place-and-route
formal verification.

At this time, only netlists are passed to the formal verification tool. Additional files (SDCs, CPFs, etc.) are needed
for more advanced formal verification checks but are not yet currently supported. Similarly, formal verification on the
behavioral RTL is also not yet supported.

Formal Verification Outputs

The formal verification tool produces reports in OBJ_DIR/formal-rundir/. Outputs from formal verification
flows such as engineering change order (ECO) patches are not yet supported.

Formal Verification Commands

• Synthesis to Formal Verification

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/
syn-output.json -o OBJ_DIR/syn-to-formal_input.json --obj_dir OBJ_DIR
syn-to-formal

• Post-Synthesis Formal Verification

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-formal_input.
json --obj_dir OBJ_DIR formal

• P&R to Formal Verification

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/
par-output.json -o OBJ_DIR/par-to-formal_input.json --obj_dir OBJ_DIR
par-to-formal

• Post-P&R Formal Verification

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-formal_input.
json --obj_dir OBJ_DIR formal

1.4.9 Static Timing Analysis

Hammer supports post-synthesis and post-P&R static timing analysis. It provides a simple API to provide a set of
design inputs (e.g. Verilog netlists, delay files, parasitics files) to perform static timing analysis (STA) for design
signoff. This action requires a tool plugin to implement HammerTimingTool.

STA Setup Keys

• Namespace: vlsi.core

– timing_tool_path

* Set to the directory containing the tool plugin directory for the STA tool, typically /path/
to/tool_plugin/timing. This will be the parent directory of the directory containing
__init__.py and defaults.yml.

1.4. Hammer Flow Steps 25



Hammer, Release 0.1

– timing_tool

* Actual name of the STA tool that is setup in the directory timing_tool_path, e.g. tempus

STA Input Keys

• Namespace: timing.inputs

– input_files ([])

* A list of file paths to the Verilog gate-level netlist to be passed to the STA tool. The paths may be
relative to the directory in which hammer-vlsi is called.

– top_module (str)

* Name of the top level module of the design to be timed.

– post_synth_sdc (str)

* Post-synthesis generated SDC. Auto-populated after syn-to-timing.

– spefs ([str])

* List of paths to all spef (parasitic extraction) files for the design. This list may include a spef file per
MMMC corner. Paths may be relative to the directory in which hammer-vlsi is called.

– sdf_file (str)

* Path to Standard Delay Format file. Auto-populated after syn-to-timing and par-to-timing.

– max_paths (int)

* Maximum number of timing paths to report from the STA tool. Large limits may hurt tool runtime.

STA Inputs

Running the syn-to-timing action after running synthesis will automatically generate the Hammer IR required to
pipe the synthesis outputs to the Hammer STA tool, and should be included in the Hammer call, as demonstrated in
the “Post-Synthesis STA” command below. The same goes for post-place-and-route STA.

STA Outputs

The STA tool produces reports in OBJ_DIR/timing-rundir/. Outputs from advanced STA flows such as engi-
neering change order (ECO) patches are not yet supported.

STA Commands

• Synthesis to STA

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-rundir/
syn-output.json -o OBJ_DIR/syn-to-timing_input.json --obj_dir OBJ_DIR
syn-to-timing

• Post-Synthesis STA

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/syn-to-timing_input.
json --obj_dir OBJ_DIR timing

• P&R to STA
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– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-rundir/
par-output.json -o OBJ_DIR/par-to-timing_input.json --obj_dir OBJ_DIR
par-to-timing

• Post-P&R STA

– hammer-vlsi -e env.yml -p config.yml -p OBJ_DIR/par-to-timing_input.
json --obj_dir OBJ_DIR timing

1.5 Hammer Use

This documentation will walk through more advanced features of the Hammer infrastructure. You will learn about
Hammer’s APIs, flow control, how to write hooks, the supported build infrastructure, and how to set up hierarchical
flows.

1.5.1 Hammer IR and Meta Variables

Hammer IR

Hammer IR is the primary standardized data exchange format of Hammer. Hammer IR standardizes physical design
constraints such as placement constraints and clock constraints. In addition, the Hammer IR also standardizes com-
munication among and to Hammer plugins, including tool control (e.g. loading tools, etc) and configuration options
(e.g. number of CPUs).

The hammer-config library

The hammer-config library is the part of Hammer responsible for parsing Hammer YAML/JSON configuration files
into Hammer IR. Hammer IR is used for the standardization and interchange of data between the different parts of
Hammer and Hammer plugins.

There is a built-in order of precedence, which from lowest to highest: 1) Hammer default, 2) tool plugin, 3) tech
plugin, 4) User’s Hammer IR. In 4), subsequent JSON/YAML files specified with -p in the command line have higher
precedence, and keys appearing later if duplicated in a file also take precedence. In the examples below, “Level #” will
be used to denote the level of precedence of the configuration snippet.

The get_setting()method is available to all Hammer technology/tool plugins and hooks (see Extending Hammer
with Hooks).

Basics

foo:
bar:

adc: "yes"
dac: "no"

The basic idea of Hammer IR in YAML/JSON format is centered around a hierarchically nested tree of YAML/JSON
dictionaries. For example, the above YAML snippet is translated to two variables which can be queried in code -
foo.bar.adc would have yes and foo.bar.dac would have no.
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Overriding

Hammer IR snippets frequently “override” each other. For example, a technology plugin might provide some defaults
which a specific project can override with a project YAML snippet.

For example, if the base snippet contains foo: 12345 and the next snippet contains foo: 54321, then
get_setting("foo") would return 54321.

Meta actions

Sometimes it is desirable that variables are not completely overwritten, but instead modified.

For example, say that the technology plugin provides:

vlsi.tech.foobar65.bad_cells: ["NAND4X", "NOR4X"]

And let’s say that in our particular project, we find it undesirable to use the NAND2X and NOR2X cells. However, if we
simply put the following in our project YAML, the references to NAND4X and NOR4X disappear and we don’t want to
have to copy the information from the base plugin, which may change, or which may be proprietary, etc.

vlsi.tech.foobar65.bad_cells: ["NAND2X", "NOR2X"]

The solution is meta variables. This lets hammer-config know that instead of simply replacing the base variable,
it should do a particular special action. Any config variable can have _meta suffixed into a new variable with the
desired meta action.

In this example, we can use the append meta action:

vlsi.tech.foobar65.bad_cells: ["NAND2X", "NOR2X"]
vlsi.tech.foobar65.bad_cells_meta: append

This will yield the desired result of ["NAND4X", "NOR4X", "NAND2X", "NOR2X"] when
get_setting("vlsi.tech.foobar65.bad_cells") is called in the end.

Applying multiple meta actions

Multiple meta actions can be applied sequentially if the _meta variable is an array. Example:

In Level 1:

foo.flash: yes

In Level 2 (located at /opt/foo):

foo.pipeline: "CELL_${foo.flash}.lef"
foo.pipeline_meta: ['subst', 'prependlocal']

Result: get_setting("foo.pipeline") returns /opt/foo/CELL_yes.lef.

Common meta actions

• append: append the elements provided to the base list. (See the above vlsi.tech.foobar65.
bad_cells example.)

• subst: substitute variables into a string.

Base:
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foo.flash: yes

Meta:

foo.pipeline: "${foo.flash}man"
foo.pipeline_meta: subst

Result: get_setting("foo.flash") returns yesman

• lazysubst: by default, variables are only substituted from previous configs. Using lazysubst allows us
to defer the substitution until the very end.

Example without lazysubst:

Level 1:

foo.flash: yes

Level 2:

foo.pipeline: "${foo.flash}man"
foo.pipeline_meta: subst

Level 3:

foo.flash: no

Result: get_setting("foo.flash") returns yesman

Example with lazysubst:

Level 1:

foo.flash: yes

Level 2:

foo.pipeline: "${foo.flash}man"
foo.pipeline_meta: lazysubst

Level 3:

foo.flash: no

Result: get_setting("foo.flash") returns noman

• crossref - directly reference another setting. Example:

Level 1:

foo.flash: yes

Level 2:

foo.mob: "foo.flash"
foo.mob_meta: crossref

Result: get_setting("foo.mob") returns yes
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• transclude - transclude the given path. Example:

Level 1:

foo.bar: "/opt/foo/myfile.txt"
foo.bar_meta: transclude

Result: get_setting("foo.bar") returns <contents of /opt/foo/myfile.txt>

• prependlocal - prepend the local path of this config file. Example:

Level 1 (located at /opt/foo):

foo.bar: "myfile.txt"
foo.bar_meta: prependlocal

Result: get_setting("foo.mob") returns /opt/foo/myfile.txt

• deepsubst - like subst but descends into sub-elements. Example:

Level 1:

foo.bar: "123"

Level 2:

foo.bar:
baz: "${foo.bar}45"
quux: "32${foo.bar}"

foo.bar_meta: deepsubst

Result: get_setting("foo.bar.baz") returns 12345 and get_setting("foo.bar.baz") re-
turns 32123

Type Checking

Any existing configuration file can and should be accompanied with a corresponding configuration types file. This
allows for static type checking of any key when calling get_setting. The file should contain the same keys as the
corresponding configuration file, but can contain the following as values:

• primitive types (int, str, etc.)

• collection types (list)

• collections of key-value pairs (list[dict[str, str]], list[dict[str, list]], etc.) These val-
ues are turned into custom constraints (e.g. PlacementConstraint, PinAssignment) later in the HAM-
MER workflow, but the key value pairs are not type-checked any deeper.

• optional forms of the above (Optional[str])

• the wildcard Any type

HAMMER will perform the same without a types file, but it is highly recommended to ensure type safety of any future
plugins.

Key History

When the ruamel.yaml package is installed, HAMMER can emit what files have modified any configuration keys
in YAML format. The file is named {action}-output-history.yml and is located in the output folder of the
given action.
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Example with the file test-config.yml:

synthesis.inputs:
input_files: ["foo", "bar"]
top_module: "z1top.xdc"

vlsi:
core:

technology: "nop"
technology_path: ["src/hammer-vlsi/technology"]

synthesis_tool: "nop"
synthesis_tool_path: ["src/hammer-vlsi/synthesis"]

test/syn-rundir/syn-output-history.yml after executing the command hammer-vlsi -p
test-config.yml --obj_dir test syn:

synthesis.inputs.input_files: # Modified by: test-config.yml
- LICENSE
- README.md

synthesis.inputs.top_module: z1top.xdc # Modified by: test-config.yml

vlsi.core.technology: nop # Modified by: test-config.yml
vlsi.core.technology_path: # Modified by: test-config.yml
- src/hammer-vlsi/technology

vlsi.core.synthesis_tool: nop # Modified by: test-config.yml
vlsi.core.synthesis_tool_path: # Modified by: test-config.yml
- src/hammer-vlsi/synthesis

Example with the files test-config.yml and test-config2.yml, respectively:

synthesis.inputs:
input_files: ["foo", "bar"]
top_module: "z1top.xdc"

vlsi:
core:

technology: "nop"
technology_path: ["src/hammer-vlsi/technology"]

synthesis_tool: "nop"
synthesis_tool_path: ["src/hammer-vlsi/synthesis"]

par.inputs:
input_files: ["foo", "bar"]
top_module: "z1top.xdc"

vlsi:
core:

technology: "${foo.subst}"
technology_path: ["/dev/null"]
technology_path_meta: subst

par_tool: "nop"
par_tool_path: ["src/hammer-vlsi/par"]

foo.subst: "nop2"
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test/syn-rundir/par-output-history.yml after executing the command hammer-vlsi -p
test-config.yml -p test-config2.yml --obj_dir test syn-par:

foo.subst: nop2 # Modified by: test-config2.yml
par.inputs.input_files: # Modified by: test-config2.yml
- foo
- bar

par.inputs.top_module: z1top.xdc # Modified by: test-config2.yml
synthesis.inputs.input_files: # Modified by: test-config.yml
- foo
- bar

synthesis.inputs.top_module: z1top.xdc # Modified by: test-config.yml
vlsi.core.technology: nop2 # Modified by: test-config.yml, test-config2.yml
vlsi.core.technology_path: # Modified by: test-config.yml, test-config2.yml
- /dev/null

vlsi.core.synthesis_tool: nop # Modified by: test-config.yml
vlsi.core.synthesis_tool_path: # Modified by: test-config.yml
- src/hammer-vlsi/synthesis

vlsi.core.par_tool: nop # Modified by: test-config2.yml
vlsi.core.par_tool_path: # Modified by: test-config2.yml
- src/hammer-vlsi/par

Key Description Lookup

With the ruamel.yaml package, HAMMER can execute the info action, allowing users to look up the description
of most keys. The comments must be structured like so in order to be read propertly:

HAMMER will take the descriptions from any defaults.yml files.

Running hammer-vlsi -p test-config.yml info (assuming the above configuration is in defaults.
yml):

Keys are queried post-resolution of all meta actions, so their values correspond to the project configuration after other
actions like syn or par.

Reference

For a more comprehensive view, please consult the hammer_config API documentation in its implementation here:

• https://github.com/ucb-bar/hammer/blob/master/src/hammer_config_test/test.py

• https://github.com/ucb-bar/hammer/blob/master/src/hammer_config/config_src.py

In config_src.py, most supported meta actions are contained in the directives list of the
get_meta_directives method.

1.5.2 Hammer APIs

Hammer has a growing collection of APIs that use objects defined by the technology plugin, such as stackups and
special cells. They expose useful extracted information from Hammer IR to other methods, such as in tool plugins that
will implement this information in a tool-compatible manner.
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For syntax details about the Hammer IR needed to use these APIs, refer to the defaults.yml.

Power Specification

Simple power specs are specified using the Hammer IR key vlsi.inputs.supplies, which is then translated
into a a Supply object. hammer_vlsi_impl exposes the Supply objects to other APIs (e.g. power straps) and can
generate the CPF/UPF files depending on which specification the tools support. Multi-mode multi-corner (MMMC)
setups are also available by setting vlsi.inputs.mmmc_corners and manual power spec definitions are sup-
ported by setting the relevant vlsi.inputs.power_spec... keys.

Timing Constraints

Clock and pin timing constraints are specified using the Hammer IR keys vlsi.inputs.clocks/
output_loads/delays. These objects can be turned into SDC-style constraints by hammer_vlsi_impl for
consumption by supported tools.

Floorplan & Placement

Placement constraints are specified using the Hammer IR key vlsi.inputs.placement_constraints.
These constraints are very flexible and have varying inputs based on the type of object the constraint applies to,
such as hierarchical modules, hard macros, or obstructions. At minimum, an (x, y) coordinate corresponding to
the lower left corner must be given, and additional parameters such as width/height, margins, layers, or orientation
are needed depending on the type of constraint. Place-and-route tool plugins will take this information and emit the
appropriate commands during floorplanning. Additional work is planned to ensure that floorplans are always legal (i.e.
on grid, non-overlapping, etc.).

All Hammer tool instances have access to a method that can produce graphical visualization of the floorplan as an
SVG file, viewable in a web browser. To use it, call the generate_visualization() method from any custom
hook (see Extending Hammer with Hooks). The options for the visualization tool are in the Hammer IR key vlsi.
inputs.visualization.

Bumps

Bump constraints are specified using the Hammer IR key vlsi.inputs.bumps. Rectangular-gridded bumps are
supported, although bumps at fractional coordinates in the grid and deleted bumps are allowed. The place-and-route
tool plugin translates the list of bump assignments into the appropriate commands to place them in the floorplan and
enable flip-chip routing. The bumps API is also used by the PCB plugin to emit the collateral needed by PCB layout
tools such as Altium Designer. This API ensures that the bumps are always in correspondence between the chip and
PCB.

The visualization tool mentioned above can also display bump placement and assignments. There are options to view
the bumps from the perspective of the ASIC designer or the PCB designer. The views are distinguishable by a reference
dot displayed in the left and right corners for the ASIC and PCB perspectives, respectively.

Pins

Pin constraints are specified using the Hammer IR key vlsi.inputs.pin. PinAssignments objects are generated
and passed to the place-and-route tool to place pins along specified block edges on specified metal layers. Preplaced
(e.g. hard macros in hierarchical blocks) pins are also supported so that they are not routed. Additional work is planned
to use this API in conjunction with the placement constraints API to allow for abutment of hierarchical blocks, which
requires pins to be aligned on abutting edges.
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Power Straps

Power strap constraints are specified using multiple Hammer IR keys in the par namespace. The currently supported
API supports power strap generation by tracks, which auto-calculates power strap width, spacing, set-to-set distance,
and offsets based on basic DRC rules specified in the technology Stackup object. The basic pieces of information
needed are the desired track utilization per strap and overall power strap density. Different values can be specified on
a layer-by-layer basis by appending _<layer name> to the end of the desired option.

Special Cells

Special cells are specified in the technology’s JSON, but are exposed to provide lists of cells needed for certain steps,
such as for fill, well taps, and more. Synthesis and place-and-route tool plugins can grab the appropriate type of special
cell for the relevant steps.

Submission

Each tool has run submission options given by the Hammer IR key <tool type>.submit. Using the command
and settings keys, a setup for LSF or similar workload management platforms can be standardized.

1.5.3 Flow Control

Physical design is necessarily an iterative process, and designers will often require fine control of the flow within any
given action. This allows for rapid testing of new changes in the Hammer IR to improve the quality of results (QoR)
after certain steps.

Given the flow defined by tool steps and hooks (described in the next section), users can select ranges of these to run.
The tool script will then be generated with commands corresponding to only the steps that are to be run.

Command-line Interface

Flow control is specified with the following optional Hammer command-line flags, which must always target a valid
step/hook:

• --start_before_step <target>: this starts the tool from (inclusive) the target step. Alternate flag:
--from_step

• --start_after_step <target>: this starts the tool from (exclusive) the target step. Alternate flag:
--after_step

• --stop_after_step: this stops the tool at (inclusive) the target step. Alternate flag: --to_step

• --stop_before_step: this stops the tool at (exclusive) the target step. Alternate flag: --until_step

• --only_step: this only runs the target step

As hammer-vlsi is parsing through the steps for a given tool, it will print debugging information indicating which
steps are skipped and which are run.

Certain combinations are not allowed:

• --only_step is not compatible with any of the other flags

• --start_before_step and start_after_step may not be specified together

• --stop_after_step and --stop_before_step may not be specified together

• --start_before_step and --stop_before_step may not be the same step
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• --start_after_step and --stop_after_step may not be the same step

• --start_after_step and --stop_before_step may not be the same or adjacent steps

Logically, a target of stop_{before|after}_step before start_{before|after}_step will also not
run anything (though it is not explicitly checked).

1.5.4 Extending Hammer with Hooks

It is unlikely that using the default Hammer APIs alone will produce DRC- and LVS-clean designs with good QoR
in advanced technology nodes if the design is sufficiently complex. To solve that, Hammer is extensible using hooks.
These hooks also afford power users additional flexibility to experiment with CAD tool commands to tweak aspects
of their designs. The hook framework is inherently designed to enable reusability, because successful hook methods
that solve a technology-specific problem may be upstreamed into the technology plugin for future designs.

Hook Methods

Hooks are fundamentally Python methods that extend a given tool’s set of available steps and can inject additional TCL
commands into the flow. Hook methods need to take in an instance of a particular HammerTool, which provides them
with the full set of Hammer IR available to the tool. Hooks (depending on how they are included, see below) get turned
into step objects that can be targeted with --from/after/to/until_step and other hooks.

Hooks can live in a Python file inside the design root so that it is available to the class that needs to extend the default
CLIDriver. An example of some skeletons of hooks are found in Chipyard. For more comprehensive examples,
refer to the hooks unit tests in the HammerToolHooksTest class of test.py.

Including Hooks

Hooks modify the flow using a few HammerTool methods, such as:

• make_replacement_hook(<target>, <hook_method>): this swaps out an existing target
step/hook with the hook method

• make_pre_insertion_hook(<target>, <hook_method>): this inserts the hook method before
the target step/hook

• make_post_insertion_hook(<target>, <hook_method>): this inserts the hook method after the
target step/hook

• make_removal_hook(<target>): this removes the target step/hook from the flow

Note: <target> should be a string (name of step/hook), while <hook_method> is the hook method itself. All of
the hook methods specified this way are targetable by other hooks.

Sometimes, CAD tools do not save certain settings into checkpoint databases. As a result, when for example a
--from_step is called, the setting will not be applied when the database from which to continue the flow is read in.
To get around this, a concept of “persistence” is implemented with the following methods:

• make_persistent_hook(<hook_method>): this inserts the hook method at the beginning of any tool
invocation, regardless of which steps/hooks are run

• make_pre_persistent_hook(<target>, <hook_method>): this inserts the hook method at the
beginning of any tool invocation, as long as the target step/hook is located at or after the first step to be run

• make_post_persistent_hook(<target>, <hook_method>): this inserts the hook method at the
beginning of any tool invocation if the target step/hook is before the first step to be run, or right after the target
step/hook if that step/hook is within the steps to be run.
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All persistent hooks are NOT targetable by flow control options, as their invocation location may vary.
However, persistent hooks ARE targetable by make_replacement/pre_insertion/post_insertion/
removal_hook. In this case, the hook that replaces or is inserted pre/post the target persistent hook takes on the
persistence properties of the target persistence hook.

Some examples of these methods are found in the Chipyard example, linked above.

A list of these hooks must be provided in an implementation of method such as get_extra_par_hooks in the
command-line driver. This new file becomes the entry point into Hammer, overriding the default hammer-vlsi
executable.

Technology, Tool, and User-Provided Hooks

Hooks may be provided by the technology plugin, the tool plugin, and/or the user. The order of step & hook priority
is as follows, from lowest to highest:

1. technology default steps

2. technology plugin hooks

3. tool plugin hooks

4. user hooks

A technology plugin specifies hooks in its __init__.py (as a method inside its subclass of
HammerTechnology). It should implement a get_tech_<action>_hooks(self, tool_name:
str) method. The tool name parameter may be checked by the hook implementation because multiple tools may
implement the same action. Technology plugin hooks may only target technology default steps to insert/replace.

The included ASAP7 technology plugin provides an example of how to inject two different types of hooks: 1) a
persistent hook invoked anytime after the init_design step to set top & bottom routing layers, and 2) two post-
insertion hooks, one to modify the floorplan for DRCs and the other to scale down a GDS post-place-and-route using
the gdstk or gdspy GDS manipulation utilities. Note that the persistent hook that is included does not necessarily
need to be persistent (Innovus does retain this setting in snapshot databases), but it serves as an example for building
your own tech plugin.

A tool plugin specifies hooks in its __init__.py (as a method inside its subclass of HammerTool). It should
implement a get_tool_hooks(self) method. In contrast to the tech-supplied hooks, the action name and tool
name are not specified because a tool instance can only correspond to a single action. Tool plugin hooks may target
technology default steps and technology plugin hooks to insert/replace.

A user specifies hooks in the command-line driver and should implement a
get_extra_<action>_hooks(self) method. User hooks may target technology default steps, technol-
ogy plugin hooks, and tool plugin hooks to insert/replace. A good example is the example-vlsi file in the
Chipyard example, which implements a get_extra_par_hooks(self) method that returns a list of hook
inclusion methods.

The priority means that if both the technology and user specify persistent hooks, any duplicate commands in the user’s
persistent hook will override those from the techonolgy’s persistent hook.

1.5.5 Hammer Buildfile

Hammer natively supports a GNU Make-based build system to manage build dependencies. To use this flow, vlsi.
core.build_system must be set to make. Hammer will generate a Makefile include in the object directory
named hammer.d after calling the build action:

hammer-vlsi -e env.yml -p config.yml --obj_dir build build
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hammer.d will contain environment variables needed by Hammer and a target for each major Hammer action (e.g.
par, synthesis, etc. but not syn-to-par, which is run automatically when calling make par). For a flat
design, the dependencies are created betwen the major Hammer actions. For hierarchical designs, Hammer will use
the hierarchy to build a dependency graph and construct the Make target dependencies appropriately. hammer.d
should be included in a higher-level Makefile. While hammer.d defines all of the variables that it needs, there are
often reasons to set these elsewhere. Because hammer.d uses ?= assignment, the settings created in the top-level
Makefile will persist. An example of this setup is found in Chipyard.

To enable interactive usage, Hammer will also create a set of “redo” targets (e.g. redo-par and redo-syn).
These targets intentionally have no dependency information; they are for advanced users to make changes to the
input config and/or edit the design manually, then continue the flow. Additional arguments can be passed to the
“redo” targets with the HAMMER_EXTRA_ARGS environment variable. This allows the user to create “patches” to
the configuration, which can be easily passed to Hammer by setting, for example, HAMMER_EXTRA_ARGS="-p
patch.yml". Other potential uses for HAMMER_EXTRA_ARGS include using --to_step/--until_step and
--from_step/after_step to stop a run at a particular step or resume one from a previous iteration.

1.5.6 Hierarchical Hammer Flow

Hammer supports a bottom-up hierarchical flow. This is beneficial for very large designs to reduce the computing
power by partitioning it into submodules, especially if there are many repeated instances of those modules.

Hierarchical Hammer Config

The hierarchal flow is controlled in the vlsi.inputs.hierarchal namespace. To specify hierarchical mode,
you must specify the following keys. In this example, we have our top module set as ChipTop, with a submodule
ModuleA and another submdule ModuleAA below that (these are names of Verilog modules).

vlsi.inputs.hierarchical:
mode: hierarchical
top_module: ChipTop
config_source: manual
manual_modules:
- ChipTop:
- ModuleA

- ModuleA:
- ModuleAA

constraints:
- ChipTop:
- vlsi.core...
- vlsi.inputs...

- ModuleA:
- vlsi.core...
- vlsi.inputs...

- ModuleAA:
- vlsi.core...
- vlsi.inputs...

Note how the configuration specific to each module in vlsi.inputs.hierarchical.constraints are list
items, whereas in a flat flow, they would be at the root level.

Placement constraints for each module, however, are not specified here. Instead, they should be specified in vlsi.
inputs.hierarchical.manual_placement_constraints. The parameters such as x, y, width,
height, etc. are omitted from each constraint for clarity. In the bottom-up hierarchal flow, instances of submodules
are of type: hardmacro because they are hardened from below.
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vlsi.inputs.hierarchical:
manual_placement_constraints_meta: append
manual_placement_constraints:
- ChipTop:
- path: "ChipTop"

type: toplevel
- path: "ChipTop/path/to/instance/of/ModuleA"

type: hardmacro
- ModuleA:
- path: "ModuleA"

type: toplevel
- path: "ModuleA/path/to/instance/of/ModuleAA"

type: hardmacro
- ModuleAA:
- path: "moduleAA"

type: toplevel

Flow Management and Actions

Based on the structure in vlsi.inputs.hierarchical.manual_modules, Hammer constructs a hierarchi-
cal flow graph of dependencies. In this particular example, synthesis and place-and-route of ModuleAA will happen
first. Syntheis of ModuleA will then depend on the place-and-route output of ModuleAA, and so forth. These are
enumerated in the auto-generated Makefile.

To perform a flow action (syn, par, etc.) for a module using the auto-generated Makefile, the name of the action is ap-
pended with the module name. For example, the generated Make target for synthesis of ModuleA is syn-ModuleA.

Cadence Implementation

Currently, the hierarchical flow is implemented with the Cadence plugin using its Interface Logic Model (ILM)
methodology. At the end of each submodule’s place-and-route, an ILM is written as the hardened macro, which
contains an abstracted view of its design and timing models only up to the first sequential element.

ILMs are similar to LEFs and LIBs for traditional hard macros, except that the interface logic is included in all views.
This means that at higher levels of hierarchy, the ILM instances can be flattened at certain steps, such as those that
perform timing analysis on the entire design, resulting in a more accurate picture of timing than a normal LIB would
afford.

Tips for Constraining Hierarchical Modules

In a bottom-up hierarchical flow, is is important to remember that submodules do not know the environment in which
they will placed. This means:

• At minimum, the pins must be placed on the correct edges of the submodule on metal layers that are accessible
in the parent level. Depending on the technology, this may interfere with things like power straps near the edge,
so custom obstructions may be necessary. If fixed IOs are placed in submodules (e.g. bumps), then in the parent
level, those pins must be promoted up using the preplaced: true option in the pin assignment.

• Clocks should be constrained more tightly for a submodule compared to its parent to account for extra clock
insertion delay, jitter, and skew at increasingly higher levels of hierarchy. Otherwise, you may run into surprise
timing violations in submodule instances even if those passed timing in isolation.

• You may need to specify pin delays vlsi.inputs.delays for many pins to optimize the partitioning of
sequential signals that cross the submodule boundary. By default, without pin delay constraints, the input and
output delay are constrained to be coincident with its related clock arrival at the module boundary.
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• Custom SDC constraints that originate from a higher level (e.g. false paths from async inputs) need to be
specified in submodules as well.

• Custom CPFs will need to be written if differently-named power nets need to globally connected between
submodules. Similarly, hierarchical flow with custom CPFs can also be used to fake a multi-power domain
topology until Hammer properly supports this feature.

Special Notes & Limitations

1. Hammer IR keys propagate up through the hierarchical tree. For example, if vlsi.inputs.clocks was
specified in the constraints for ModuleAA but not for ModuleA, ModuleA will inherit ModuleAA’s con-
straints. Take special care of where your constraints come from, especially for a parent module with more than
one submodule. To avoid confusion, it is recommended to specify the same set of keys for every module.

2. Hammer IR keys specified at the root level (i.e. outside of vlsi.inputs.hierarchical.
constraints) do not override the corresponding submodule constraints. However, if you add a Ham-
mer IR file using -p on the command line (after the file containing vlsi.inputs.hierarchical.
constraints), those keys are global and override submodule constraints unless a meta action is specified.
To avoid confusion, it is recommended to specify all constraints with vlsi.inputs.hierarchical.
constraints.

3. Due to the structure of vlsi.inputs.hierarchical.constraints as a list structure, currently, there
are the following limitations:

• You must include all of the constraints in a single file. The config parser is unable to combine constraints
from differnt files because most meta actions do not work on list items (advanced users will need to use
deepsubst). This will make it harder for collaboration, and unfortunately, changes to module constraints
at a higher level of hierarchy after submodules are hardened will trigger the Make dependencies, so you
will need to modify the generated Makefile or use redo-targets.

• Other issues have been observed, such as the bump API failing (see this issue at the top module level. This
is caused by similar mechanisms as above. The workaround is to ensure that bumps are specified at the
root level for only the top module and the bumps step is removed from submodule par actions.

4. Most Hammer APIs are not yet intelligent enough to constrain across hierarchical boundaries. For example:

• The power straps API is unable to pitch match power straps based on legalized placement of submodule
instances or vice versa.

• The pin placement API does not match the placement of pins that may face each other in two adjacent
submodule instances. You will need to either manually place the pins yourself or ensure a sufficient
routing channel between the instances at the parent level.

5. Hammer does not support running separate decks for submodule DRC and LVS. Technology plugins may need
to be written with Makefiles and/or technology-specific options that will implement different checks for sub-
modules vs. the top level.

1.6 Hammer Examples

The following are prebuilt example designs, toolchain and/or flows you can use

1.6.1 OpenROAD and Sky130

The OpenROAD-flow is an open-source, technology-independent VLSI toolchain. As of this writing, it has the ability
to run synthesis, place-and-route, and drc through various open-source tools.
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Hammer has the ability to target the OpenROAD toolchain and the Skywater 130nm PDK. So you can now simply
push a button in Chipyard to go from your Chisel design to a somewhat reasonable gds at an example 130-nm node.

Instructions

Follow these directions in the Chipyard docs to build your own design with OpenROAD and Sky130.
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